
A Study of the Performance of
VirtualGL 2.1 and TurboVNC 0.4
Version 1d, 8/20/2008 -- The VirtualGL Project

This report and all associated illustrations are licensed under the Creative
Commons Attribution 3.0 License. Any works which contain material derived
from this document must cite The VirtualGL Project as the source of the material
and list the current URL for the VirtualGL web site.

This report attempts to characterize the performance of VirtualGL 2.1 and TurboVNC 0.4 across the
range of supported server and client platforms, across different types of networks, and using a wide
variety of configuration options. It also attempts to compare, apples to apples, the performance of the
current versions of VirtualGL and TurboVNC with their predecessor versions and with current versions
of other remote display software.

1 The Tools

1.1 GLXSpheres
The GLXSpheres benchmark, which is included in the VirtualGL 2.1 server packages and which is
described in detail in the VirtualGL User's Guide, is designed to emulate the image output of the old
nVidia SphereMark demo. It was discovered, quite by accident, that the SphereMark demo is a good
testbed for studying the performance of VirtualGL's image pipeline. The images generated by
SphereMark, and by its open source look-alike GLXSpheres, contain a realistic proportion of solid
background and smooth-shaded geometry which simulates the workload of images generated by real
visualization and CAD applications. The benchmark also contains very few polygons, so when it is run
in a VirtualGL environment, the performance will always be limited by VirtualGL and never by the
server's 3D graphics card.

Whether or not GLXSpheres is reflective of the performance of any real application is left as an
exercise for the reader. To put this another way, Your Mileage May Vary (YMMV.)

1.2 CPUStat
CPUStat is a simple Linux tool which reads the /proc filesystem to determine the percentage of time
for which the server CPUs are active. vmstat on Solaris serves the same purpose.

1

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

1.3 NetTest
NetTest, which is included in the VirtualGL server and client packages, was extended for the purposes
of this study to include a bandwidth measurement tool. This new mode, enabled by invoking
nettest -bench, measures the aggregate bandwidth usage on a given network interface over a
given period of time. Adding this mode to NetTest was necessitated by accuracy issues which were
discovered in other open source bandwidth measurement solutions, such as IPTraf and NICStat.

1.4 NISTNet
Developed by the National Institute of Standards and Technology, NISTNet is a network performance
limiter. It can be used to artificially add latency to or subtract bandwidth from a Linux network
connection, simulating a slower network.

2 The Methodology

Benchmarking VirtualGL, or any other complex system, requires a high degree of vigilance. There is
always a risk that a transient phenomenon may introduce unwanted variables which affect the
consistency or reproducibility of the tests. The general strategies for benchmarking this system are: (a)
run an application which is known to produce steady performance in a local display environment, (b)
measure this performance over a relatively long time period, and (c) where possible, sanity check
results against other, independent metrics.

For each client, server, and X server combination, a baseline level of performance was obtained, and
one parameter at a time was altered and compared to the baseline in order to ascertain that parameter's
effect on the performance of the system. The baseline was obtained by running the 64-bit version of
GLXSpheres in VirtualGL with no frame spoiling:

/opt/VirtualGL/bin/vglrun -sp /opt/VirtualGL/bin/glxspheres64

If the VGL Image Transport was used, then the baseline was measured with the default vglconnect
options (X11 tunneled through SSh but with no encryption or tunneling of the VirtualGL image
stream.)

For each test, GLXSpheres was run with its default window size of 1240 x 900 pixels. Care was taken
to ensure that the benchmark window was never obscured during any of the tests. The client screen
was set to a resolution of 1280 x 1024 pixels to accommodate the benchmark window without clipping.
When running GLXSpheres in an X proxy environment, such as TurboVNC, the proxy desktop
resolution was set to 1240 x 900 pixels, and GLXSpheres was run using full-screen mode:

/opt/VirtualGL/bin/vglrun -sp /opt/VirtualGL/bin/glxspheres64 -fs

This caused GLXSpheres to occupy the entire client area of the X proxy window, which resulted in the
same coverage of the client desktop as if the benchmark had been run using the VGL Image Transport.

2

The benchmark's frame rate was measured from the client's point of view by averaging the output of
TCBench over a 60-second period (two separate 30-second runs.) This was sanity checked, where
possible, with the profiling output of VirtualGL as well as the frame rate reported by GLXSpheres
itself. As long as the VGL Image Transport is being used with frame spoiling disabled, then the
benchmark's reported frame rate is a valid measure of client/server frame rate The frame rate reported
by GLXSpheres is additionally valid when using TurboVNC 0.4, as long as frame spoiling is disabled
in VirtualGL and as long as the network and the TurboVNC viewer are able to process frames as fast as
the server can compress and send them. In cases where the frame rate was somewhat high (generally
30+ frames/second), it was necessary to increase the sampling rate of TCBench (tcbench -s100) to
obtain accurate results.

While the benchmark was running, the average CPU usage across all server CPUs was measured by
running /opt/VirtualGL/bin/cpustat (Linux) or vmstat 5 (Solaris) on the server. These
programs were allowed to run until the average CPU usage converged to a consistent value.

While the benchmark remained running, the average bandwidth usage for the server's network device
was measured by running /opt/VirtualGL/bin/nettest -bench <device> 25 on the
server, and the average of the second and third results were taken (this equates to the average network
bandwidth for a 50-second period.)

3 The Metrics

While frame rate is a useful metric, it does not tell the whole story. The reason is that the frame rate in
any thin client system is often limited by the client's (in)ability to decompress and draw the frames. If
two tests produced the same frame rate, it would be impossible to tell whether one test used more CPU
or network resources than the other. As long as the resource consumption was within the limits of what
the server and the network could handle, then the difference in resource consumption would not reveal
itself in a simple comparison of client/server frame rates.

One must instead look at the average CPU and network usage on the server to ascertain which modes
of operation made more efficient use of these resources. Why this is important is that VirtualGL
servers are usually provisioned for more than one simultaneous user. It is important to understand how
many VirtualGL users can potentially co-exist on a given server platform and network connection
without bogging down either. In this study, four metrics were used to ascertain this: “CPU-limited
frame rate”, “encoding time”, “network-limited frame rate”, and “frame size.”

The CPU-limited frame rate is, simply put, the frame rate at which VirtualGL could theoretically
deliver frames if the server CPUs were the only bottleneck. It is computed by dividing the actual
client/server frame rate (in frames/second) by the average server CPU utilization. For instance, if the
actual frame rate was 22 frames/second and the server's CPUs were, on average, 60% busy, then the
CPU-limited frame rate was 22 / 0.60 = 37 frames/second. This tells us that, if a second user were to
start using VirtualGL on the same server, there is a possibility that the first user's performance would
slow down a bit (assuming that both users were actively manipulating a 3D scene at the same time, and
assuming that both users were connected to the server via similar clients and networks.) If the actual

3

frame rate equals the CPU-limited frame rate, then the server's CPUs are maxed out, and the server
cannot accommodate additional users without a proportional drop in performance. The CPU-limited
frame rate defines how efficiently the server CPUs were used when compressing and sending each
frame. A higher value means that the CPUs took less time to compress each frame and were thus used
more efficiently.

Encoding time is the reciprocal of the CPU-limited frame rate. It defines the amount of CPU time
(usually expressed in milliseconds) that it took the server, on average, to encode each frame for
transmission. This document usually reports absolute figures in terms of CPU-limited frame rate but
will sometimes refer to their relative differences using encoding time, since encoding time is an
intuitively easier concept to grasp.

The network-limited frame rate is the frame rate at which VirtualGL could theoretically deliver frames
to the client if the network was the only bottleneck. Network-limited frame rate is computed by
dividing the theoretical network bandwidth (in Megabits/second) by the actual network usage and then
multiplying by the actual frame rate. For instance, if a test generated an average frame rate of 20
frames/second using 60 Megabits/second of bandwidth on a 100 Megabit/second network, then the
network-limited frame rate was 100 / 60 * 20 = 33 frames/second. If two users had to share this 100
Megabit/second interconnect, then there is a good chance that they would both observe performance
degradation when simultaneously manipulating a 3D scene in VirtualGL.

The last metric, frame size, is closely related to network-limited frame rate. Frame size is simply the
number of megabits of data, on average, that are required to represent a single frame of the 3D
animation on the network. It is computed by dividing the average network usage by the frame rate.
For instance, (60 Megabits/second) / (22 frames/second) = 2.73 Megabits/frame. It is easy to derive the
compression ratio from this figure if you know the size of the image. In the case of GLXSpheres, the
image contains 1240 x 900 = 1,116,000 pixels. Each pixel initially contains 24 bits, so the compression
ratio for the above example is (1.12 Megapixels/frame) * (24 bits/pixel) / (2.73 Megabits/frame) = 9.8.

Returning to the definition of network-limited frame rate, it is now easy to see that it is simply the
theoretical network bandwidth (in Megabits/second) divided by the frame size (in Megabits/frame.)
So, for instance, if a particular protocol had a frame size of 2 Megabits, 50 frames/second could be
accommodated on a 100 Megabit/second link, assuming no other performance bottlenecks.

For the purposes of this document, 1 Megabit = 1,000,000 bits, not 1,048,576 bits. This is the common
usage when referring to the speed of networks.

4

4 The Systems
The test systems consisted of “typical” workstation platforms that might be used with VirtualGL:

SPARC server and client:

● Dual-processor (1.6 GHz UltraSPARC III) Sun Ultra45

● 2 GB memory

● Sun XVR-2500 framebuffer

○ Driver patch 120928-22

● Sun OpenGL v1.5, patch 120812-22

● Solaris 10 6/06 + all patches up to 10/31/07

○ Sun mediaLib 2.5

x86 server:

● Sun Ultra20 with 2.4 GHz dual-core AMD Opteron 180

● 2 GB memory

● nVidia QuadroFX 1400

○ Driver version 100.14.19

● Solaris 10 Update 4

○ Sun mediaLib 2.5

● CentOS Enterprise Linux 5.0

x86 client:

● Sun w1100z with single 1.8 GHz AMD Opteron 144

● 512 MB memory

● nVidia QuadroFX 3000

○ Driver version 100.14.19 (Linux) and 81.67 (Windows)

● Windows XP Service Pack 2

○ Hummingbird Exceed 3D 2008

● CentOS Enterprise Linux 5.0

5

5 The Results

5.1 VirtualGL 2.1 vs. VirtualGL 2.0.1 (VGL Image Transport)
No significant differences were observed between the performance of VirtualGL 2.0.1 and VirtualGL
2.1 when running on Linux or Windows systems. However, there was marked improvement between
VirtualGL 2.0.1 and VirtualGL 2.1 on Solaris/SPARC systems. This increase in performance was due
to optimized Huffman coding routines, which were contributed to TurboJPEG/mediaLib by the
mediaLib authors.

Comparison of VGL Image Transport Performance Between VirtualGL 2.0.1 and VirtualGL 2.1
Servers (Connecting to VirtualGL 2.1 Client)

Actual Frame
Rate

(VGL 2.0.1)

Actual Frame
Rate

(VGL 2.1)
[Baseline]

CPU-Limited
Frame Rate
(VGL 2.0.1)

CPU-Limited
Frame Rate
(VGL 2.1)
[Baseline]

SPARC →
Windows

18.62 23.75
(+28%)

29.09 38.93
(+34%)

SPARC →
Windows
(VGL_NPROCS=2)

23.51 23.17
(-1.4%)

28.66 37.37
(+30%)

Solaris/x86
(32-bit) →
Windows

20.08 23.04
(+15%)

34.62 39.04
(+13%)

Solaris/x86
(64-bit) →
Windows

23.09 23.01
(-0.35%)

47.12 46.96
(-0.34%)

Comparison of VGL Image Transport Performance Between VirtualGL 2.0.1 and VirtualGL 2.1
Clients (Connecting to VirtualGL 2.1 Server)

Actual Frame
Rate

(VGL 2.0.1)

Actual Frame
Rate

(VGL 2.1)
[Baseline]

Linux →
SPARC

22.57 33.19
(+47%)

With VGL 2.0.1, it took two compression threads on the SPARC server to drive the client at full
capacity. With VGL 2.1, this could be achieved with only one compression thread, thanks to the 34%
more efficient use of the server's CPUs.

6

For the Solaris/x86 server, the optimized Huffman routines only improved the performance of the 32-
bit VirtualGL server components. However, the Solaris/x86 server realized a huge performance
improvement across the board by upgrading from mediaLib 2.4 (the version included with Solaris 10)
to mediaLib 2.5 (available from http://www.sun.com/processors/vis/mlib.html). See below for more
details.

5.2 TurboVNC 0.4 vs. TurboVNC 0.3.3
In order to discuss what has changed between TurboVNC 0.3.3 and 0.4, it is first necessary to discuss
how VNC works. The RFB protocol, on which VNC is based, is a client-driven protocol. Most other
remote display protocols (including the VGL Image Transport, X11, RDP, etc.) are server-driven
protocols. With a server-driven protocol, the server pushes image updates to the remote display client,
usually unprompted. With VNC, on the other hand, the server will not send pixels to a VNC viewer
unless the viewer explicitly requests a framebuffer update.

After initialization, the VNC viewer sends an initial framebuffer update request to obtain the entire
contents of the server's virtual framebuffer. After that, it can send incremental update requests to obtain
only modified regions of the framebuffer. When a framebuffer update request is received by the VNC
server, the server first checks to see if there are any modified pixels to be sent. If so, then those pixels
are immediately compressed and sent to the viewer as a framebuffer update. The viewer then
decompresses and draws the update before sending a request for another update. Meanwhile, the VNC
server processes X11 requests from applications while it is waiting for the next update request from the
viewer.

This works OK on low-latency networks, but on high-latency connections, it's problematic. Since the
server is waiting on the viewer and the viewer is waiting on the server, each framebuffer update
requires a round trip from server to viewer. As the latency of the network increases, it begins to take as
much time to transmit each frame as it does to encode or decode it, and this causes the frame rate to
drop severely. In the VGL Image Transport and other streaming image protocols, network latency is
“hidden” by pipelining the various stages of image transmission. The client can be decoding and
drawing one frame while it is receiving another and while the server is encoding yet another. With a
client-driven protocol, however, such pipelining is impossible, because the next frame cannot be
encoded by the server until the previous one has been decoded by the client.

Beginning with TurboVNC 0.3.2, an attempt was made to pipeline at least part of the RFB protocol.
This was accomplished by modifying the TurboVNC viewer such that it sent a new framebuffer update
request before decoding the previous update, rather than after. This allowed at least part of the network
latency to be hidden, which significantly improved TurboVNC's performance on high-latency
networks. However, it was discovered that this optimization slowed performance on low-latency
networks. The reasons why were not well understood at the time, and in TurboVNC 0.3.3, a “High-
Latency Network” switch was introduced as a compromise. This switch allowed one to turn off the
pipelined update request optimization when using TurboVNC on low-latency networks.

One of the goals for TurboVNC 0.4 was to eliminate this “High-Latency Network” switch, since it was
often a source of confusion for users. So we set out to uncover the reason why enabling pipelined
update requests decreased performance on low-latency networks. As it turns out, the reason has to do

7

http://www.sun.com/processors/vis/mlib.html

with a feature of the VNC server called “deferred updates.” As with many X servers, the VNC X
server is single-threaded. The server is essentially an infinite loop that continuously polls for requests
from either an X application or a connected VNC viewer. If the VNC server receives a drawing request
from an X application, the server will check to see if there is an unprocessed framebuffer update
request from a VNC viewer. If so, it will trigger a deferred framebuffer update and return to its main
loop. The loop continues to check the deferred update timer, and once the timer has elapsed, then the
deferred update will be immediately sent to the viewer. If an X drawing request is received and no
framebuffer update request is pending, then the VNC server marks the drawing region as modified.
Modified regions will then be sent immediately the next time an update request is received from the
viewer. The deferred update timer is meant to act as a sort of caching mechanism, allowing many small
framebuffer updates to be combined into one larger update.

Whether or not a framebuffer update is deferred or sent immediately depends on when the framebuffer
update request is received from the viewer. If a new update request is received very soon after the
previous update is sent, then chances are that the framebuffer will not yet have been modified relative
to the previous update. Thus, the update request will not actually be processed until the next time an
X11 drawing command occurs, at which point a deferred update request will be triggered. If, however,
a new framebuffer update request arrives somewhat after the previous update has been sent, then
chances are that the framebuffer will have been modified, and thus a new update will be sent
immediately.

To make a long story short, if the pipelined update request feature (the “High-Latency Network” switch
in TurboVNC 0.3.3) was turned on when connecting over a low-latency network, it caused almost all of
the framebuffer update requests to be deferred in the VNC server. This is a problem, because the
default value of the deferred update timer in VNC is 40 ms. Thus, an additional 40 ms delay was being
introduced into every frame. TurboVNC 0.4's solution was to reduce the deferred update timer to 1 ms.
This allowed pipelined update requests to be used on low-latency networks with no performance
penalty. Thus, the “High-Latency Network” switch could be hard-wired to on and removed from the
TurboVNC Viewer interface.

Note that turning off the deferred update mechanism altogether (setting the timer to 0) produced
undesirable performance effects, such as a perceivable lag when typing text into an xterm window. It
seems that the deferred update mechanism works as designed, but the default timer value was simply
too high to perform well with TurboVNC's other optimizations.

Additional performance improvements were realized in the SPARC version of TurboVNC 0.4 due to
the same TurboJPEG/mediaLib Huffman coding optimizations described earlier.

The following tests compared the end-to-end performance of TurboVNC 0.3.3 and TurboVNC 0.4
when using optimal settings for a low-latency network.

8

Performance Comparison Between TurboVNC 0.3.3 Server/Viewer (“High-Latency Network”
Switch Turned Off) and TurboVNC 0.4 Server/Viewer

Actual Frame
Rate

(TurboVNC 0.3.3)

Actual Frame
Rate

(TurboVNC 0.4)
[Baseline]

CPU-Limited
Frame Rate

(TurboVNC 0.3.3)

CPU-Limited
Frame Rate

(TurboVNC 0.4)
[Baseline]

Linux →
Linux

23.90 28.44
(+19%)

36.59 42.45
(+16%)

SPARC →
Windows

14.60 17.21
(+18%)

23.17 25.69
(+11%)

Solaris/x86 →
Windows

19.37 22.70
(+17%)

30.26 34.92
(+15%)

No significant improvement was observed (or expected) in the Windows or Linux TurboVNC viewers.
The performance improvement observed above was due to the combination of reducing the deferred
update timer to 1 ms (from 40 ms) and pipelining the framebuffer update requests from the client.
Additionally, the SPARC server realized some improvement from the Huffman coding optimizations.

The following test compared the TurboVNC 0.3.3 and TurboVNC 0.4 viewers, in an attempt to isolate
the performance improvement due to the Huffman coding optimizations. The TurboVNC 0.4 server
was used in both cases, and the “High-Latency Network” switch was turned on in the TurboVNC 0.3.3
viewer to simulate the behavior of the TurboVNC 0.4 viewer.

Actual Frame
Rate

(TurboVNC 0.3.3)

Actual Frame
Rate

(TurboVNC 0.4)
[Baseline]

Linux →
SPARC

21.13 24.26
(+15%)

In general, the performance improvements in TurboVNC 0.4 were only observed on low-latency
network connections. The performance improvements between TurboVNC 0.3.3 and TurboVNC 0.4
were barely measurable on high-latency connections.

5.3 mediaLib 2.4 vs. 2.5
When the Solaris/x86 server was upgraded from mediaLib 2.4 (the version included with Solaris 10) to
mediaLib 2.5, the performance of VirtualGL and TurboVNC improved dramatically.

9

Comparison of VGL Image Transport Performance When Using mediaLib 2.4 and mediaLib 2.5

Actual Frame
Rate

(mediaLib 2.4)

Actual Frame
Rate

(mediaLib 2.5)
[Baseline]

CPU-Limited
Frame Rate

(mediaLib 2.4)

CPU-Limited
Frame Rate

(mediaLib 2.5)
[Baseline]

Solaris/x86
(32-bit) →
Windows

11.66 23.04
(+98%)

21.20 39.04
(+84%)

Solaris/x86
(64-bit) →
Windows

16.95 23.01
(+36%)

29.73 46.96
(+58%)

Comparison of TurboVNC Performance When Using mediaLib 2.4 and mediaLib 2.5

Actual Frame
Rate

(mediaLib 2.4)

Actual Frame
Rate

(mediaLib 2.5)
[Baseline]

CPU-Limited
Frame Rate

(mediaLib 2.4)

CPU-Limited
Frame Rate

(mediaLib 2.5)
[Baseline]

Solaris/x86 →
Windows

13.46 22.70
(+69%)

22.81 34.92
(+53%)

The vast improvement in 32-bit performance went a long way toward closing the severe gap that
existed between the performance of 32-bit and 64-bit Solaris/x86 versions of mediaLib 2.4

There was no significant difference observed between the performance of mediaLib 2.4 and mediaLib
2.5 on SPARC systems.

5.4 32-bit vs. 64-bit
The only platform on which 32-bit code performed significantly differently from 64-bit code was
Solaris/86. While the performance of 32-bit code improved vastly in the Solaris/x86 version of
mediaLib 2.5 (as shown above), the 64-bit version was still found to be 20% more efficient in its use of
the server's CPUs (a 20% higher CPU-limited frame rate) than the 32-bit version. Both 32-bit and 64-
bit versions, however, were able to drive all of the client platforms to full capacity, so the efficiency
differences would only be observable in a multi-user environment.

5.5 Will That Be One CPU or Two?
The question of whether or not a second CPU benefits VirtualGL is complex. Certainly, multiple CPUs
are tremendously beneficial when multiple users are sharing the VirtualGL server. But whether a
multiple-CPU system will improve a single user's performance depends on the speed of the client and
the efficiency of the server. The following table demonstrates the general effectiveness of adding a
second CPU on the test servers:

10

Improvement in VGL Image Transport Performance Due to Adding a Second CPU

Actual Frame
Rate

(1 CPU)

Actual Frame
Rate

(2 CPUs)
[Baseline]

CPU-Limited
Frame Rate

(1 CPU)

CPU-Limited
Frame Rate

(2 CPUs)
[Baseline]

Linux →
Windows

22.76 24.01
(+5.5%)

29.91 54.82
(+83%)

SPARC →
Windows

19.96 23.75
(+19%)

19.96 38.93
(+95%)

Solaris/x86
(32-bit) →
Windows

20.30 23.04
(+13%)

20.30 39.04
(+92%)

Solaris/x86
(64-bit) →
Windows

23.01 23.01
(+0.0%)

23.72 46.96
(+98%)

As you can see, in a single-user environment, the second CPU is only beneficial if the server is
inefficient enough to require more than one CPU to drive the client. Otherwise, the frame rate is
limited by the client, and the second CPU has little benefit to the single user. These figures also
demonstrate that allocating one CPU per active user is a good rule of thumb, since a single client can
easily use all or nearly all of the resources of a single server CPU whenever the client is running at full
capacity.

Improvement in VGL Image Transport Performance Due to Adding a Second Compression
Thread

Actual Frame
Rate

(VGL_NPROCS=1)
[Baseline]

Actual Frame
Rate

(VGL_NPROCS=2)

CPU-Limited
Frame Rate

(VGL_NPROCS=1)
[Baseline]

CPU-Limited
Frame Rate

(VGL_NPROCS=2)

Linux →
Windows

24.01 23.04
(-4.0%)

54.82 45.70
(-17%)

SPARC →
Windows

23.75 23.17
(-2.4%)

38.93 37.37
(-4.0%)

Solaris/x86 →
Windows

23.01 22.60
(-1.8%)

46.96 46.12
(-1.8%)

Adding a second compression thread might be beneficial if the client was faster or if each of the
individual server CPUs was slower. In Section 5.1, adding a second compression thread was also
shown to be of some benefit in cases where the server's CPUs were being used inefficiently (such as in
the SPARC version of VirtualGL 2.0.x.) However, with VirtualGL 2.1 and with these specific test
machines, it was observed that one compression thread was sufficient on all server platforms to drive

11

the client to full capacity. Thus, adding a second compression thread only decreased the efficiency of
the server without producing any increase in actual frame rate.

5.6 OpenGL vs. X11 Drawing
The VirtualGL client can draw images using either OpenGL or X11 commands. The use of OpenGL
drawing is automatic (and necessary) when the VirtualGL client draws quad-buffered stereo images.
Otherwise, OpenGL is used by default on Solaris/SPARC clients with 3D accelerators, and X11 is used
by default on other platforms.

Comparison Between the Performance of OpenGL and X11 Drawing in the VirtualGL Client

Actual Frame Rate
(X11 Drawing)

Actual Frame Rate
(OpenGL Drawing)

Linux →
Linux

23.51
[Baseline]

26.41
(+12%)

Linux →
SPARC

18.54
(-44%)

33.19
[Baseline]

Linux →
Windows

24.01
[Baseline]

17.64
(-27%)

This validates VirtualGL's choice of default drawing methods on Windows clients (X11) and Solaris
clients (OpenGL.) SPARC systems can send packed (3-byte) pixels to the framebuffer when using
OpenGL, which is a large reason why OpenGL drawing is so much faster on these systems than X11
drawing (which is forced to use 4-byte pixels.) Most other platforms use 4-byte pixels for both
OpenGL and X11.

The decrease in performance on Windows seemed to be due to overhead incurred by the
glDrawPixels() operation in Exceed 3D. Low-level benchmarks showed that, in Exceed 3D
2008, drawing an image using glDrawPixels() was only about 1/5 as fast as drawing the same
image using XShmPutImage().

OpenGL performed better than X11 for this specific Linux client configuration, but there is a
tremendous amount of variability in Linux graphics adapters. Many graphics adapters that one might
find on a Linux PC client might not have accelerated OpenGL at all, so X11 is the safer default choice
(and it performs well enough in this case as well.)

5.7 Software Gamma Correction
When an OpenGL application is displayed locally on a Solaris/SPARC workstation, the default
behavior of Sun OpenGL is to gamma correct the output of the OpenGL application. VirtualGL
simulates this behavior when remotely displaying from a Solaris/SPARC server to any type of client. If
the client machine is also a SPARC machine, then VirtualGL will try to use a gamma-corrected X
visual (thus allowing the graphics hardware on the SPARC client to perform the gamma correction.)

12

Otherwise, VirtualGL will perform gamma correction internally. VirtualGL's internal gamma
correction mechanism can also be manually enabled when remotely displaying from non-SPARC
servers. The following table shows the effect that VirtualGL's internal gamma correction mechanism
has on the overall performance of the system when using the VGL Image Transport.

The Effect of Software Gamma Correction on the Performance of the VGL Image Transport

Actual Frame
Rate

(no gamma)

Actual Frame
Rate

(S/W gamma)

CPU-Limited
Frame Rate
(no gamma)

CPU-Limited
Frame Rate

(S/W gamma)
Linux →
Windows

24.01
[Baseline]

23.95
(-0.25%)

54.82
[Baseline]

43.15
(-21%)

SPARC →
Windows

23.50
(-1.1%)

23.75
[Baseline]

43.52
(+12%)

38.93
[Baseline]

Solaris/x86 →
Windows

23.01
[Baseline]

23.34
(-1.4%)

46.96
[Baseline]

43.22
(-8.0%)

Although enabling gamma correction did increase the encoding time, the effect on actual frame rate
was negligible. The increase in encoding time was greater on the Linux server because the Linux
version of VirtualGL uses straight C code to perform software gamma correction. The Solaris version
of VirtualGL uses mediaLib to accelerate this task, and thus the encoding time increased less on Solaris
servers when enabling software gamma correction.

Enabling gamma correction decreased the frame size by 4-7%. This makes intuitive sense, since
gamma correction linearizes the color gradients used in Goraud shading and thus decreases the high
frequency components in the image, allowing the JPEG compression algorithm to compress more
efficiently.

5.8 Linux vs. Windows (Client)
Generally, no significant differences were observed between the performance of the Linux and
Windows versions of VirtualGL when running on the same x86 client machine. There were a few
notable exceptions, however:

● OpenGL drawing performed about 50% faster on the Linux client, due to the performance
limitations of Exceed 3D which were described above.

● Quad-buffered stereo was 59% faster on the Linux client due to the same Exceed 3D
performance limitations.

● SSh tunneling of the VGL Image Transport performed 34% faster on the Linux client due to
performance limitations of PuTTY. SSh tunneling of the TurboVNC connection was 58% faster
on the Linux client due to the same performance limitations.

● RGB image decoding was 19% faster when displaying to the Linux client (over a gigabit
connection.)

13

● The transparent overlay test in GLXSpheres (/opt/VirtualGL/bin/vglrun -sp
/opt/VirtualGL/bin/glxspheres64 -o) performed about 25% slower on the Linux
client. The Linux nVidia drivers have historically not provided good performance when
drawing pixels to a transparent overlay, and this seemed to be the portion of the test that caused
the slow-down.

These disparities all involve limitations in the performance of one or more client software components,
so they would not be likely to reveal themselves if the server or the network was the primary
performance bottleneck (which would be the case when running on a low-bandwidth network, for
instance.)

5.9 Linux vs. Solaris (Server)
Generally, no significant differences in actual frame rate were observed when remotely displaying from
the x86 server running Linux and from the same x86 server running Solaris. However, for the baseline
tests, the following differences in encoding time were observed:

● When using the VGL Image Transport, the 64-bit VirtualGL libraries on Solaris/x86 required
17% more time to encode each frame than the equivalent VirtualGL libraries on Linux (in other
words, VirtualGL/Linux had a 17% higher CPU-limited frame rate.)

● When using the VGL Image Transport, the 32-bit VirtualGL libraries on Solaris/x86 required
41% more time to encode each frame than the equivalent VirtualGL libraries on Linux.

● TurboVNC on Solaris/x86 required 16% more time to encode each frame than TurboVNC on
Linux.

While this efficiency gap has closed dramatically with the introduction of mediaLib 2.5, mediaLib 2.5
still uses more CPU cycles than the Intel Performance Primitives to compress the same JPEG images
on the same hardware. This disparity affected the overall availability of the server's CPUs, but it did
not cause any difference in actual frame rate. However, such a difference might reveal itself if multiple
users were sharing the server.

The Solaris/x86 TurboJPEG codec produced frames that were about 10-15% larger across the board
than the Linux version of the codec. This disparity in frame size would be unlikely to affect actual
performance unless the network were the primary bottleneck.

14

5.10 SPARC vs. x86 (Server)
The following table lists several performance comparisons between the SPARC and x86 test servers,
both running Solaris 10 and displaying to the Windows client:

Actual Frame
Rate

(SPARC Server)

Actual Frame
Rate

(x86 Server)

CPU-Limited
Frame Rate

(SPARC Server)

CPU-Limited
Frame Rate
(x86 Server)

[Baseline]
(VGL Image Transport)

23.75 23.01
(-3.1%)

38.93 46.96
(+21%)

32-bit
(VGL Image Transport)

23.85 23.04
(-3.3%)

39.74 39.04
(-1.8%)

RGB
(VGL Image Transport)

27.58 29.36
(+6.5%)

49.25 88.97
(+81%)

Anaglyphic Stereo
(VGL Image Transport)

11.79 21.34
(+81%)

25.63 33.34
(+30%)

[Baseline]
(TurboVNC)

17.21 22.70
(+32%)

25.69 34.92
(+36%)

RGB
(TurboVNC)

15.29 18.34
(+20%)

23.89 49.57
(+108%)

Although both servers were able to drive the client to full capacity in most cases, the SPARC server
generally required more CPU time to do so. One may wonder why the x86 server performed 81%
faster when rendering anaglyphic stereo than the SPARC server, when it was only 30% more efficient.
This reveals a bottleneck in the XVR-2500 framebuffer and drivers. When VirtualGL performs
anaglyphic stereo rendering, it reads back individual color channels (GL_RED, GL_GREEN, and
GL_BLUE) from the 3D graphics card to build the anaglyph. On nVidia hardware, reading back
GL_RED, GL_GREEN, and GL_BLUE separately performs the same as if the entire image had been
read back at once using GL_RGB. On the XVR-2500, however, reading back an individual color
channel is significantly slower than reading back the entire framebuffer as RGB, and reading back all
three color channels in sequence is slower still.

While it is true that comparing SPARC and x86 servers is not truly an “apples to apples” comparison,
both of the workstations used in this test were current offerings in Sun's workstation product line at the
time of publication. In fact, the SPARC workstation was the highest-end SPARC workstation that Sun
produced at the time of this writing, and the x86 workstation was a lower-end model.

5.11 RGB vs. JPEG
When using the VGL Image Transport over the baseline gigabit link, RGB encoding generally
produced faster results than JPEG encoding. RGB also required significantly less CPU time on the
server, but it required significantly more network bandwidth:

15

Comparison of the Performance of JPEG and RGB Encoding When Using the VGL Image
Transport

Actual
Frame Rate

(JPEG)
[Baseline]

Actual
Frame Rate

(RGB)

CPU-
Limited

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited

Frame Rate
(RGB)

Network-
Limited

Frame Rate
(JPEG)

[Baseline]

Network-
Limited

Frame Rate
(RGB)

Linux →
Linux

23.51 32.51
(+38%)

56.10 95.62
(+70%)

510.7 40.48

Linux →
SPARC

33.19 25.15
(-24%)

60.57 90.13
(+48%)

512.5 40.41

Linux →
Windows

24.01 27.27
(+14%)

54.82 90.28
(+65%)

499.4 40.60

SPARC →
Windows

23.75 27.58
(+16%)

38.93 49.25
(+26%)

499.1 39.36

Solaris/x86→
Windows

23.01 29.36
(+28%)

46.96 88.97
(+89%)

432.3 39.01

The conclusion one can draw from this is that RGB encoding might be beneficial for point-to-point
(single user) remote display in cases where the server CPU resources are more precious than the
network resources and there is gigabit switched Ethernet between the server and the client. However,
in a multi-user environment, RGB encoding quickly becomes an untenable proposition. A single
gigabit link could not have even supported two concurrent clients using RGB encoding at the above
frame rates. RGB is also not a tenable proposition for anything slower than gigabit. For these specific
test cases, RGB encoding required about 25 Megabits to represent each frame. This frame size is
significantly smaller than that of the X11 Image Transport, since RGB encoding transfers only 24 bits
per pixel instead of 32. RGB encoding can also take advantage of VirtualGL's inter-frame differencing
mechanism to further reduce the average frame size. However, 25 Megabits/frame is still far too large
to achieve decent frame rates on even a 100 Megabit link.

16

Comparison of the Performance of JPEG and RGB Encoding When Using the VGL Image
Transport (Quad-Buffered Stereo)

Actual
Frame Rate

(JPEG)
[Baseline]

Actual
Frame Rate

(RGB)

CPU-
Limited

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited

Frame Rate
(RGB)

Network-
Limited

Frame Rate
(JPEG)

[Baseline]

Network-
Limited

Frame Rate
(RGB)

Linux →
Linux

12.67 16.45
(+30%)

26.83 34.85
(+30%)

235 19.35

Linux →
Windows

8.00 8.11
(+1.4%)

22.59 44.81
(+98%)

243 19.11

When used with the Linux client, RGB encoding provided significantly better stereo performance on a
gigabit link than JPEG encoding. However, this was at the expense of even more network bandwidth
usage. As one can see from the table above, driving the client with a decent frame rate required almost
all of the available bandwidth.

Comparison of the Performance of JPEG and RGB Encoding When Using TurboVNC

Actual
Frame Rate

(JPEG)
[Baseline]

Actual
Frame Rate

(RGB)

CPU-
Limited

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited

Frame Rate
(RGB)

Network-
Limited

Frame Rate
(JPEG)

[Baseline]

Network-
Limited

Frame Rate
(RGB)

Linux →
Linux

28.44 25.66
(-9.8%)

42.45 64.62
(+52%)

463.8 29.53

Linux →
SPARC

24.26 11.17
(-54%)

37.37 43.13
(+15%)

471.2 26.77

Linux →
Windows

26.08 18.28
(-30%)

40.62 42.60
(+4.9%)

454.3 25.50

SPARC →
Windows

17.21 15.29
(-11%)

25.69 23.89
(-7.0%)

472.5 26.59

Solaris/x86→
Windows

22.70 18.34
(-19%)

34.92 49.57
(+42%)

415.1 25.41

With TurboVNC, the results were mixed. The RGB codec in TurboVNC is essentially the same as the
Raw codec in TightVNC, with few or no optimizations. Prior to sending the pixels, this encoding
scheme converts them into the format preferred by the client's display, and this format usually contains
32 bits per pixel and not 24. This, combined with the lack of inter-frame differencing, produced frame
sizes 40-60% larger than the RGB encoding implementation in the VGL Image Transport. At these
frame sizes, a single user came close to saturating the entire gigabit link.

17

In general, the combination of larger frame sizes and pixel conversion overhead caused the frame rates
to drop across the board, when compared to the JPEG baseline tests. In some cases, such as the
SPARC client, this drop in performance was dramatic. As the frame rate dropped, more and more
frames began to be spoiled on the server, which decreased its efficiency. In the SPARC → Windows
case, this efficiency decrease caused the RGB test to perform less efficiently than even the JPEG test.

In certain cases, RGB encoding in TurboVNC might still be advantageous, but the advantages are much
less clear than in the VGL Image Transport. For those desiring a lossless compression solution in
TurboVNC, the Lossless Refresh feature might be a better option than RGB encoding.

5.12 Gigabit vs. 100 Megabit
When driving the client to full capacity, VirtualGL generally used less than 50 Megabits/second of
network bandwidth in the baseline configuration. Thus, if the server had a 100 Megabit interconnect, it
could have accommodated two users before saturating the interconnect.

There were, however, some features in VirtualGL which required gigabit connectivity in order to
achieve decent performance:

● RGB encoding required generally about 25 Megabits/frame when using the VGL Image
Transport and 35-40 Megabits/frame when using TurboVNC, and thus it was limited to 2-4
frames/second on a 100 Megabit link.

● Since it uses the X11 Image Transport, synchronous mode (VGL_SYNC=1) required 36-38
Megabits/frame when displayed to a remote X server. It was thus limited to less than 3
frames/second on a 100 Megabit link.

● Since it uses the X11 Image Transport but transfers only 1 byte/pixel, color index rendering
required about 9 Megabits/frame when displayed to a remote X server. This produced usable
performance on a 100 Megabit link, but gigabit was required to drive the client to full capacity.

The conclusion one can draw is that gigabit is a good idea for the server network, but 100 Megabit
switched Ethernet to each client (or even wireless) should provide more than enough bandwidth for
VirtualGL or TurboVNC when using the default (perceptually lossless JPEG) encoding setting.

18

5.13 TurboVNC vs. the VGL Image Transport

Comparison of Baseline Performance Between the VGL Image Transport and TurboVNC

Actual Frame
Rate

(VGL Image
Transport)

Actual Frame
Rate

(TurboVNC)

CPU-Limited
Frame Rate
(VGL Image
Transport)

CPU-Limited
Frame Rate
(TurboVNC)

Linux →
Linux

23.51 28.44
(+21%)

56.10 42.45
(-24%)

Linux →
SPARC

33.19 24.26
(-27%)

60.57 37.37
(-38%)

Linux →
Windows

24.01 26.08
(+8.6%)

54.82 40.62
(-26%)

SPARC →
Windows

23.75 17.21
(-28%)

38.93 25.69
(-34%)

Solaris/x86→
Windows

23.01 22.70
(-1.3%)

46.96 34.92
(-26%)

Although greatly improved vs. TurboVNC 0.3.3, TurboVNC 0.4 on SPARC servers still has
performance issues which bear further investigation. TurboVNC on Linux was generally observed to
be faster than the VGL Image Transport. On Solaris/x86, the two systems performed at parity, although
the VGL Image Transport was significantly more efficient in its use of the server CPUs (as was the case
on all server platforms.)

The VGL Image Transport produced 4-10% smaller frames than TurboVNC, due primarily to the VGL
Image Transport's inter-frame differencing mechanism.

19

5.14 SSL and SSh Encryption

Comparison of the Performance of SSL Encryption (vglrun +s) and SSh Encryption
(vglconnect -s) When Using the VGL Image Transport

Actual
Frame Rate

(Un-
encrypted)
[Baseline]

Actual
Frame Rate

(SSL
Encryption)

Actual
Frame Rate

(SSh
Tunneling)

CPU-
Limited

Frame Rate
(Un-

encrypted)
[Baseline]

CPU-
Limited

Frame Rate
(SSL

Encryption)

CPU-
Limited

Frame Rate
(SSh

Tunneling)

Linux →
Linux

23.51 18.58
(-21%)

20.67
(-12%)

56.10 41.84
(-25%)

42.44
(-24%)

Linux →
SPARC

33.19 32.56
(-1.9%)

32.57
(-1.9%)

60.57 52.26
(-14%)

53.48
(-12%)

Linux →
Windows

24.01 19.85
(-17%)

PuTTY:
15.44

(-36%)

OpenSSH:
19.22

(-20%)

54.82 44.91
(-18%)

PuTTY:
40.51

(-26%)

OpenSSH:
41.78

(-24%)
SPARC →
Windows

23.75 19.85
(-16%)

16.45
(-31%)

38.93 33.08
(-15%)

32.25
(-17%)

Solaris/x86 →
Windows

23.01 19.22
(-16%)

15.44
(-33%)

46.96 41.78
(-11%)

39.58
(-16%)

Tunneling the VGL Image Transport through PuTTY (using vglconnect -s on the Windows
client) generally performed about 20% slower than using VirtualGL's built-in SSL encryption feature
(vglrun +s). However, SSL and SSh performed at parity on the SPARC client, and SSh was
actually a bit faster on the Linux client. Using Cygwin OpenSSH instead of PuTTY (set
VGLCONNECT_OPENSSH=1) on the Windows client resulted in performance which almost matched
that of VGL's built-in SSL encryption feature.

In any sense, these results show that, if the performance issue in PuTTY could be eliminated, then
VirtualGL's built-in SSL encryption feature would no longer be necessary. It should be made clear that
these performance differences would only reveal themselves on a high-speed network. On low-
bandwidth and high-latency links, which are the primary environments in which SSh and SSL would be
used, there was no observed difference between the performance of SSh and SSL.

There was also no significant difference observed between the frame sizes generated by SSL and SSh
tunneling.

20

Comparison of the Performance of SSh Encryption and Unencrypted Transmission When Using
TurboVNC

Actual Frame Rate
(Un-encrypted)

[Baseline]

Actual Frame Rate
(SSh Tunneling)

CPU-Limited
Frame Rate

(Un-encrypted)
[Baseline]

CPU-Limited
Frame Rate

(SSh Tunneling)

Linux →
Linux

28.44 24.44
(-14%)

42.45 36.97
(-13%)

Linux →
SPARC

24.26 22.59
(-6.9%)

37.37 33.42
(-11%)

Linux →
Windows

26.08 PuTTY:
15.46 (-41%)

OpenSSH
21.22 (-19%)

40.62 PuTTY:
21.68 (-47%)

OpenSSH:
30.23 (-26%)

As with the VGL Image Transport, PuTTY's performance lagged significantly behind that of OpenSSH.

The numbers above also reveal one of VNC's dirty little secrets. As explained in Section 5.2, the VNC
protocol (RFB) is a client-driven protocol. Image updates are generally only sent to the client if it
requests them. Since the VNC X server is single-threaded, it divides its time between processing X
requests and processing RFB requests. If the VNC viewer and the network link are fast enough that
each frame can be transmitted and decoded in equal or less time than it took to encode the frame, then
the VNC server will always have a pending framebuffer request, and thus every frame that VirtualGL
draws into the X server will be sent to the client. However, if the network or the viewer is too slow to
keep up with the server, then the server has plenty of time to process multiple PutImage requests
from VirtualGL while it is waiting for the next framebuffer update request from the client. Since these
interim PutImage requests alter the virtual framebuffer but do not result in pixels being sent to the
viewer, VNC is effectively spoiling those frames.

In general, this shouldn't be an issue when running interactive applications, because the frame rate of
interactive applications is gated by mouse movement or other factors. However, the introduction of
spurious frame spoiling at low frame rates makes TurboVNC difficult to benchmark accurately, since
the spoiled frames add to the average encoding time of each transmitted frame. To put this in
perspective, though, other VNC solutions are worse, since they will generally never be able to achieve
sufficient frame rates to avoid spoiling. At least with TurboVNC, there is a reasonable expectation that
it will not spoil frames in the baseline configuration.

Further investigation of this topic is definitely warranted.

21

5.15 X11 Forwarding vs. Direct X11
When using a remote X display connection, there was generally no observable difference between the
performance of VirtualGL when using SSh X11 Forwarding (vglconnect with no arguments) and
when using a direct X11 connection (vglconnect -x). The exceptions were modes which forced
the use of the X11 Image Transport over the remote X display connection. Specifically, synchronous
mode (vglrun +sync), color index rendering (glxspheres -c), and proxy compression mode
(vglrun -c proxy) were quite a bit slower when tunneling the X11 protocol through SSh. SSh
effectively acted as a bandwidth limiter, limiting the bandwidth as follows:

Effective Bandwidth Limit of SSh X11 Forwarding

Effective
Bandwidth Limit

(Synchronous
Mode)

Actual Frame
Rate

(Synchronous
Mode)

Effective
Bandwidth Limit

(Color Index)

Actual Frame
Rate

(Color Index)

Linux →
Linux

274 Mbits/s 7.35 288 Mbits/s 30.74

Linux →
SPARC

177 Mbits/s 4.75 129 Mbits/s 13.93

Linux →
Windows

68.1 Mbits/s 1.84 68.6 Mbits/s 7.26

In all of the above cases, the frame rate improved dramatically (2-10x) when using a direct X11
connection. Even with a direct X11 connection, however, synchronous mode from the Linux server to
the SPARC client was still slow due to pixel conversion overhead.

22

5.16 Stereographic Rendering
Comparison Between the Performance of Stereographic and Monographic Rendering in the VGL

Image Transport

Actual
Frame Rate

(Mono)
[Baseline]

Actual
Frame Rate

(Quad-
Buffered
Stereo)

Actual
Frame Rate
(Anaglyphic

Stereo)

CPU-
Limited

Frame Rate
(Mono)

[Baseline]

CPU-
Limited

Frame Rate
(Quad-

Buffered
Stereo)

CPU-
Limited

Frame Rate
(Anaglyphic

Stereo)

Linux →
Linux

23.51 12.67
(-46%)

21.71
(-7.7%)

56.10 26.83
(-52%)

37.68
(-33%)

Linux →
SPARC

33.19 14.20
(-57%)

25.99
(-22%)

60.57 28.79
(-52%)

40.29
(-33%)

Linux →
Windows

24.01 8.00
(-67%)

21.25
(-11%)

54.82 22.59
(-59%)

36.95
(-33%)

SPARC →
Windows

23.75 7.98
(-66%)

11.79
(-50%)

38.93 18.56
(-52%)

25.63
(-34%)

Solaris/x86 →
Windows

23.01 7.78
(-66%)

21.34
(-7.3%)

46.96 21.61
(-54%)

33.34
(-29%)

Most of these figures make intuitive sense. To support quad-buffered stereo rendering, VirtualGL must
compress and send twice the data over the network. So quad-buffered stereo should be about half as
fast and half as efficient as mono, which it generally was when displaying to the Linux and SPARC
clients. However, quad-buffered stereo incurred an additional penalty on the Windows client due to the
27% slow-down in OpenGL drawing vs. X11 drawing in Exceed (described in Section 5.6.) This
compounded the slow-down and made quad-buffered stereo only about 1/3 as fast as mono on the
Windows client, rather than only half as fast. Anaglyphic stereo generally performed a lot better and
was only 1/3 less efficient than mono. The exception here was the SPARC server, which was limited
by the readback performance issue described in Section 5.10.

In terms of frame size, quad-buffered stereo produced frames that were about twice the size of mono
(which is intuitively obvious), and anaglyphic stereo produced frames that were 30-40% larger than
mono. The latter was due primarily to the additional window coverage caused by the overlapping
stereo images, which reduced the amount of solid background in each frame.

In TurboVNC, the situation was similar. Anaglyphic stereo produced frames 25-45% larger than mono,
used the server's CPUs 25-30% less efficiently, and reduced the actual frame rate by 5-15% (except
when displaying from the SPARC server, which was also limited to about 11 frames/second.)

23

5.17 Interactive Performance
In order to simulate a realistic “worst-case” scenario for interactive applications, GLXSpheres includes
a mode in which it will wait for a mouse event before rendering each frame. Since the image workload
this generates is very similar to the workload generated by GLXSpheres in its default, non-interactive
mode, results from the two modes can be reasonably compared. This allows one to quantify the
performance differences between a benchmark environment (with frame spoiling disabled) and a
realistic interactive environment (with frame spoiling enabled.)

The reason why frame spoiling exists in VirtualGL is because the X server or proxy generally samples
the mouse at a much faster rate (40-60 Hz) than VirtualGL is able to deliver frames to the client. Thus,
if the application had to wait for VirtualGL to finish transmitting a frame before it could render a new
one, then the mouse would get ahead of the 3D rendering, and the user would perceive a lag in
responsiveness. Frame spoiling allows the 3D rendering to be synchronized with the mouse rather than
with the image transmission pipeline. But since VirtualGL cannot usually transmit 60 frames/second to
the client, unneeded frames have to be rendered, read back, and discarded so that the movement of the
3D scene appears to track the mouse movement. Unfortunately, this causes additional server overhead,
but it's the only way to prevent the 3D application from feeling “draggy.”

The performance of VirtualGL was compared when using both the interactive mode of GLXSpheres
and the non-interactive mode (baseline), in order to quantify the additional load incurred by rendering
and processing the spoiled frames on the server. When running the interactive tests, the mouse was
moved continuously while measuring the frame rate, CPU load, and network load. The measuring
tools were started on a 10-second delay in order to give the system enough time to reach steady state.

In general, running GLXSpheres interactively using the VGL Image Transport with frame spoiling
enabled caused only a slight (no more than 5%) drop in actual frame rate relative to the baseline. The
interactive cases used the server's CPUs 22-33% less efficiently than the baseline cases, and there was
no significant difference in frame sizes between the interactive and baseline cases.

In TurboVNC, the interactive test cases reduced the actual frame rate by no more than 7% relative to
the baseline and were only 2-5% less efficient in their use of the server CPUs than the baseline.
TurboVNC already has a significantly higher encoding time than the VGL Image Transport, so the
interactive tests tended to equalize this.

5.18 The Effect of Increasing Network Latency on VirtualGL's Performance
NISTnet was used to artificially add network latency to both the Linux server and the Linux client,
simulating the latency of a long-haul connection. NetTest was used to verify that the correct amount of
latency had been added. The bandwidth was not altered from the baseline (gigabit) case.

24

0 ms 5 ms 10 ms 20 ms 50 ms 100 ms
0

5

10

15

20

25

30
Performance of VirtualGL with Varying Network Latencies (Linux to Linux)

VGL Image Transport,
Non-Interactive
VGL Image Transport,
Interactive
TurboVNC, Non-In-
teractive
TurboVNC, Interactive

Simulated Latency

Fr
am

es
/s

ec

TurboVNC's interactive performance was much worse than that of the VGL Image Transport when the
latency of the network was increased beyond 20 ms. For higher latency values, the interactive frame
rate of TurboVNC began to be dominated almost entirely by the round-trip time (2x the latency) from
client to server. As described in Section 5.2, RFB is a client-driven protocol. The VNC server will not
send a frame until requested by the client, and the client will not send a new request until it has
received a previous frame. So it is expected that each transmitted frame will require a round trip from
server to client. However, it is unclear why this protocol deficiency affected only the interactive tests
and not the non-interactive tests.

In contrast to TurboVNC, the VGL Image Transport protocol pushes frames from the server rather than
pulling them from the client, and this eliminates the need for any round trips. The performance of the
VGL Image Transport was limited only by the overhead of TCP/IP at higher latencies, and it is possible
that increasing the TCP window size would improve that situation.

It is important to note that the above test compared only the steady state performance of GLXSpheres.
It did not compare the amount of time it took to start up the application, display the initial window, and
reach steady state. Even with the incredibly simple GUI in GLXSpheres (a single X window), the
application startup time over the simulated 100 ms link was on the order of several minutes when using
the VGL Image Transport and on the order of several seconds when using TurboVNC. But once the
application reached steady state, the VGL Image Transport was the better performing of the two
protocols.

25

5.19 The Effect of Decreasing Bandwidth on VirtualGL's Performance
The following table lists the observed frame sizes of the various VirtualGL and TurboVNC protocols as
well as their theoretical network-limited frame rates on various interconnects. All quoted frame sizes
are from the Linux → Linux baseline tests, but similar results were obtained on other platforms (except
Solaris/x86, which produced frame sizes that were about 10-15% larger.)

Frame Size
(Mbits)

Network-
Limited

Frame Rate
(Gigabit)

Network-
Limited

Frame Rate
(100 Mbit)

Network-
Limited

Frame Rate
(10 Mbit)

Network-
Limited

Frame Rate
(5 Mbit)

Network-
Limited

Frame Rate
(1 Mbit)

VGL Image
Transport
(JPEG 1X Q95)

2.0 500 50 5.0 2.5 0.50

VGL Image
Transport
(JPEG 2X Q80)

0.85 1200 120 12 6.0 1.2

VGL Image
Transport
(JPEG 4X Q30)

0.43 2300 230 23 12 2.3

VGL Image
Transport
(RGB)

25 40 4 0.40 0.20 0.040

TurboVNC
(JPEG 1X Q95)

2.2 450 45 4.5 2.3 0.45

TurboVNC
(JPEG 2X Q80)

1.0 1000 100 10 5.0 1.0

TurboVNC
(JPEG 4X Q30)

0.57 1800 180 18 8.8 1.8

TurboVNC
(RGB)

34 29 2.9 0.29 0.15 0.029

Green cells indicate that the frame rate is likely to be limited by the network (rather than the client), but
the usability should still be good (10 fps or greater.) Yellow cells indicate that the network is likely to
limit the frame rate, and the usability would likely be only marginal (5-10 fps.) Red cells indicate that
the network is likely to limit the frame rate to an unusable level (< 5 fps.)

At the moment, neither VirtualGL nor TurboVNC offers a good solution for 1 Megabit and slower
networks (DSL, T1, etc.) “Low Quality” mode (JPEG compression with 4x chrominance subsampling
and quality=30) is generally about the lowest usable quality level that still allows text to be read on the
screen, and even that low level of quality is incapable of producing more than about 2 frames/second
on a 1 Megabit link. With a 5 Megabit link (which is about equivalent to a good cable modem
connection), the “Low Quality” setting produces frame rates that are marginal to good.

Various configurations were tested over a 100 Megabit link as well as a 10 Megabit link (simulated

26

with NISTnet), and all of the results matched very closely to the theoretical results listed above. It
should be noted, however, that this test did not factor in network latency. When running VirtualGL on
a network that is both high-latency and low-bandwidth, the above results represent a best-case scenario
that will almost never be achieved. It should also be noted that there is a huge amount of variability in
the size of frames compressed with JPEG. For VirtualGL's baseline JPEG compression settings
(quality=95 with no chrominance subsampling), we have observed compression ratios as bad as 1:1 and
as good as 100:1, depending on the type of image being compressed. The baseline GLXSpheres tests
generally produced images that compressed with a ratio of between 10:1 and 15:1. YMMV.

5.20 Simultaneous Usage by Multiple Clients
In order to simulate the effect of multiple clients using a VirtualGL server system at the same time, both
the Linux client and SPARC client were driven simultaneously by the Linux server. The server was
able to drive both clients at 23 frames/second using 100% of its CPUs and using 89 Megabits/second of
network bandwidth.

This validates the provisioning rule of thumb for VirtualGL that each simultaneous user should be
allocated a single CPU and 50 Megabits/second of network bandwidth.

One important note, however – when running this test, it was observed that the readback performance
for the server's nVidia Quadro card would slow down dramatically after a few minutes, causing the
steady state performance to drop by nearly half on both clients. This could be due to running out of
Pbuffer space, although the server's graphics card had 256 MB of graphics memory and should not
have run out of space with only two users. At any rate, this highlighted a potential problem with multi-
user framebuffer sharing which bears further investigation.

27

5.21 RealVNC and NX
RealVNC, TightVNC, and NX, three popular X proxies with similar features to TurboVNC, were
compared to TurboVNC in terms of actual frame rate, server CPU usage, and network usage. The
results are as follows (these were all measured with the Linux server and the Linux client.)

Actual Frame Rate CPU-Limited Frame
Rate

Frame Size (Mbits)

TurboVNC 0.4
(JPEG 1X Q95)

28.44 42.45 2.16

TurboVNC 0.4
(JPEG 2X Q80)

36.42 50.09 1.00

TurboVNC 0.4
(RGB)

25.66 64.62 33.86

RealVNC 4.1.2
(ZRLE 16M)

8.15 14.02 4.74

RealVNC 4.1.2
(Hextile 16M)

12.58 20.56 16.24

RealVNC 4.1.2
(Raw 16M)

26.08 41.40 18.76

NX 3.1.0
(JPEG 2X Q80 [qual=9],
no SSL, no Zlib)

9.13 16.91 0.88

NX 3.1.0
(RGB, no SSL, no Zlib)

6.53 10.59 15.33

TightVNC 1.3.9
(JPEG 2X Q80 [qual=9])

13.73 23.27 0.94

This chart shows pretty clearly why TurboVNC exists. Its parent implementation, TightVNC, requires
more than double the CPU cycles to compress each frame (at the same quality) and performs nearly
three times more slowly, all for only a 6% savings in frame size. To be fair, TightVNC isn't designed
for full-screen video. It provides optimizations that are mainly targeted toward running 2D
applications on extremely low-bandwidth links, and it's quite likely that it does a better job of this than
TurboVNC does. However, for the types of workloads generated by VirtualGL, TurboVNC is the clear
winner. Not shown are the results from the Windows client, on which TightVNC produced only 2
frames/second of actual performance (for unexplained reasons.)

RealVNC's Hextile and Raw protocols proved quite usable on a gigabit connection (if one could ignore
the lack of double buffering.) The Raw protocol apparently uses some sort of additional compression
(probably Zlib), which would explain the additional CPU overhead as well as the reduced frame size
(relative to the RGB encoding implementation in TurboVNC.) The ZRLE protocol shows promise as a
lossless compression solution for 100 Megabit links, if the frame rate could be increased somehow.

Even without any added compression or encryption, NX still had a significantly higher encoding time

28

than any of the other proxies. As an experiment, the libjpeg codec in NX 3.1.0 was replaced with
TurboJPEG, the same codec used by TurboVNC and VirtualGL. Switching to TurboJPEG improved
NX's efficiency by about 50%, but even with this improvement, it was still using about twice the CPU
cycles as TurboVNC to compress each frame. NX was never able to achieve more than 10-11
frames/second, even with the help of TurboJPEG. On Windows, the same experiment never produced
more than 6-7 frames/second. This definitely bears further investigation, as there seems to be some
unknown factor which causes exceptionally high CPU overhead on the NX server.

5.22 TurboVNC Java Viewer
Comparison of the Performance of the Native and Java TurboVNC Viewers

Actual Frame
Rate

(Native)
[Baseline]

Actual Frame
Rate

(Java)

CPU-Limited
Frame Rate

(Native)
[Baseline]

CPU-Limited
Frame Rate

(Java)

Linux →
Linux

28.44 10.78
(-62%)

42.45 24.72
(-42%)

Linux →
Windows

26.08 10.26
(-61%)

40.62 19.43
(-52%)

The Java viewer was tested on both the Linux and Windows clients, remotely displaying from the
Linux server. It was observed to be a bit more than 1/3 as fast as the native viewer, which is consistent
with its use of the slower libjpeg codec rather than TurboJPEG. However, note that the efficiency
nastiness described in Section 5.14 was also observed here. The lower frame rates produced by the
Java viewer caused the server to spoil frames, which (on average) halved its efficiency.

5.23 Indirect OpenGL Rendering vs. VirtualGL
People often ask why VirtualGL is necessary when their application “runs just fine” with indirect
OpenGL rendering. Some applications do produce acceptable performance in an indirect OpenGL
environment, but generally that is only the case if the application uses display lists, if the 3D model is
relatively small, and if textures are not used. Applications which do not use display lists must send
each vertex of the 3D model to the 3D graphics card every time a frame is drawn (this is called
“immediate mode” rendering.) With indirect OpenGL, the 3D graphics card is located on the client
machine, so using immediate mode rendering requires sending every vertex of the 3D model from
server to client every time a frame is rendered.

Display lists essentially allow an application to cache 3D vertex data on the graphics card, meaning that
the vertices for a 3D model only have to be sent once. However, display lists are only suitable for
static 3D models, that is models whose geometry does not change from frame to frame. For obvious
reasons, this makes display lists unsuitable for most design applications, because the whole point of a
design application is to modify a 3D model in real time. For volume visualization applications, the use
of display lists is moot, because volume viz applications generally send most of their data in the form

29

of textures. For instance, an application which is passing a planar probe through a gigavoxel-sized
volumetric dataset may generate several megabytes of new textures for every frame while using only a
handful of vertices.

VirtualGL originated in the oil & gas industry, an industry which regularly deals with very large
geometric and volumetric datasets. These datasets are large enough that transmitting them over even a
gigabit network is prohibitively slow, much too slow to even consider doing in real time. But this test
attempts to show that indirect OpenGL rendering is also prohibitively slow with more “normal-sized”
datasets, the types of datasets that any design engineer might create.

SPECviewperf is a suite of OpenGL benchmarks which measures the performance of 3D hardware
under simulated workloads from popular 3D mechanical CAD and digital content creation applications.
Application vendors work with the SPEC OpenGL Performance Committee (OPC) to define a 3D
dataset which is representative of those used by their customers as well as a list of typical rendering
modes and what percentage of time (on average) each of those modes is used by customers in the field.
The breakdown of percentages for each rendering mode is used to develop a composite score for each
application, expressed as a weighted geometric mean of frame rates for all of the rendering modes (see
http://www.spec.org/gpc/opc.static/geometric.html for more details.)

As described in Section 1.1, the GLXSpheres benchmark is designed to generate an image workload
rather than a geometry workload, so it uses display lists and renders relatively few polygons. Thus, it is
an unrealistic benchmark to use for this particular test, since what we're really testing here is the remote
display solution's ability to handle medium-to-large 3D models.

For this test, the Linux server and Linux client were used in their baseline configurations (connected by
gigabit Ethernet.) A direct X11 connection was used so that SSh would not slow down the GLX
protocol stream in the indirect OpenGL tests. VirtualGL was used with the VGL Image Transport
enabled and frame spoiling disabled. The “local” tests were run on the VirtualGL server as a reference
(this is described in more detail below.)

30

http://www.spec.org/gpc/opc.static/geometric.html
http://www.spec.org/gwpg/gpc.static/vp9info.html

3ds Max

CATIA

EnSight

Lightscape

Maya

Pro/ENGINEER

SolidWorks

UGS Teamcenter Viz

UGS NX

0 10 20 30 40 50 60

21.63

29.68

13.26

28.17

55.26

20.67

27.73

6.3

8.51

12.88

18.37

11.01

14.52

22.54

15.21

20.81

5.93

7.69

1.32

1.69

3.57

2.1

1.63

1.07

2.11

0.48

2.32

SPECviewperf 9.0.3 Performance, Linux Server to Linux Client

Local
VirtualGL
Indirect OpenGL

Frames/second (Weighted Geom. Mean)

Since the SPECviewperf benchmarks are designed to simulate real application behavior, only the UGS/
NX viewset uses display lists. Even though that viewset uses display lists, the models it contains are
large enough (up to 30 million vertices) that it still performs poorly with indirect OpenGL rendering.
Even on a gigabit network, none of the indirect OpenGL tests generated frame rates high enough to be
considered usable in a 3D application.

The local display tests are included as a reference, since they show areas in which the performance was
limited by the 3D hardware rather than by the remote display software. In particular, the UGS,
EnSight, and Pro/ENGINEER tests seemed to be mostly 3D hardware-limited, so relatively little drop
in frame rate was observed by running those tests remotely through VirtualGL. SolidWorks, CATIA,
and Maya appeared to be mainly limited by the speed of the VirtualGL client, whereas Lightscape and
3ds Max were very likely limited by the JPEG compressor. The 3ds Max benchmark generates a great
deal of stippled images, whereas the Lightscape benchmark generates a great deal of complex, multi-
colored wireframe images. Both of these types of images have very high frequency components and
are thus corner cases for JPEG compression. The images generated by the 3ds Max and Lightscape
benchmarks tend to compress very inefficiently, thus requiring more CPU and network resources.
Further research, including an analysis of CPU and network usage when running SPECviewperf, is

31

definitely warranted.

6 Summary
Red text indicates areas in need of further research.

● On SPARC platforms, VGL 2.1 performed significantly faster than VGL 2.0.x.

● On Solaris/x86 servers, VGL 2.1 performed noticeably faster than VGL 2.0.x when running 32-
bit applications.

● VGL performed significantly faster on Solaris/x86 platforms when using mediaLib 2.5 rather
than mediaLib 2.4. However, TurboJPEG/IPP still require 20-40% less CPU time to compress
each frame than TurboJPEG/mediaLib. Also, mediaLib 2.5 produces JPEG frames that are
10-15% larger than those produced by IPP. It's unclear if any further optimizations in mediaLib
would be possible, but there is still room for them. The disparity between the efficiency of
TurboJPEG/IPP and TurboJPEG/mediaLib did not generally affect the actual frame rate with a
single user.

● There was generally no significant performance difference between running 32-bit and 64-bit
apps in VirtualGL, except on Solaris/x86. On that platform, the 32-bit version of VirtualGL
used more CPU time to encode each frame than the 64-bit version. However, this would not
likely translate into a measurable difference in frame rate except in a heavily-loaded multi-user
environment.

● A second server CPU was shown to improve single-user performance in some cases, but not by
much. Generally, 1 CPU per active user was validated to be a good provisioning rule.

● Enabling additional compression threads on the server (VGL_NPROCS=2) could not be shown
to increase performance in any case, and it usually increased the encoding time on the server.

● Enabling software gamma correction (the default on Solaris/SPARC servers) increased the
encoding time by a small amount, but not enough to affect the actual frame rate with a single
user.

● The default VirtualGL Client drawing method (OpenGL on SPARC systems with 3D
accelerators, X11 drawing on other systems) was validated to be the fastest approach. Exceed
3D was observed to perform much worse with OpenGL drawing than with X11 drawing.

● Linux and Windows clients generally performed equally, but the Linux client was significantly
faster when performing OpenGL drawing (including drawing quad-buffered stereo images),
when tunneling the VGL Image Transport or TurboVNC through SSh, and when decoding RGB
images.

● While all platforms were able to drive the client machine to full capacity, the SPARC server

32

required significantly more server CPU resources to do so, both when using JPEG and RGB
encoding. The SPARC server additionally exhibited poor readback performance for GL_RED,
GL_GREEN, and GL_BLUE pixel formats, which caused the performance of anaglyphic stereo
to suffer.

● RGB encoding was found to be a reasonable solution for point-to-point (single user) display
over a gigabit link using the VirtualGL Image Transport. In this context, it provided a bit more
performance then JPEG and used significantly less CPU resources on the server. And, of
course, RGB is fully lossless. However, RGB encoding in TurboVNC was generally slower
than JPEG, and it was only more efficient in certain cases.

● There was generally no advantage to having a gigabit connection to the client except when
using RGB encoding, synchronous mode (with a remote X display connection), and color index
rendering (also with a remote X display connection.)

● TurboVNC was generally found to be as fast or faster than the VGL Image Transport, except on
SPARC servers and clients, but TurboVNC used significantly more server CPU resources on all
platforms. Any decrease in overall frame rate caused the TurboVNC server to spoil frames,
which increased its server resource usage further still.

● There was generally no advantage to using VirtualGL's built-in SSL encryption mechanism
(vglrun +s) when compared to SSh tunneling (vglconnect -s), except on Windows
clients. On Windows clients, when using a high-speed network, SSL encryption was found to
be faster due to performance limitations in PuTTY. Similarly, tunneling TurboVNC through
SSh was faster on the Linux client vs. the Windows client due to the same limitations in PuTTY.

● On a remote X11 connection, synchronous mode was found to perform well only when using
gigabit connectivity and a direct X11 connection (as opposed to an SSh-forwarded X11
connection.)

● Color index rendering was found to be usable on an SSh-forwarded remote X11 connection, but
it only achieved full performance with a direct X11 connection.

● Quad-buffered stereo generally performed at half the frame rate of mono and used twice the
server CPU resources, except on Windows clients, where it performed at only 1/3 the frame rate
of mono due to performance limitations in Exceed 3D.

● Anaglyphic stereo generally performed only a bit slower than mono, except on Solaris/SPARC
servers (which were limited by a readback performance issue.) Anaglyphic stereo generally
required about 50% more encoding time on the server (in other words, it was 1/3 less efficient
in its use of the server's CPUs.)

● Running GLXSpheres interactively using the VGL Image Transport and frame spoiling
generally caused about a 25-50% increase in encoding time on the server but did not otherwise
affect performance. Running the test application interactively in TurboVNC did not cause any
significant change in performance vs. the non-interactive tests.

33

● The VNC (RFB) protocol requires a round trip between client and server to transmit every
frame, and this limited its performance severely on high-latency connections when compared to
the VGL Image Transport protocol.

● “High quality” JPEG (no chrominance subsampling, quality=95) was generally observed to
require 20 Megabits/second of bandwidth to achieve acceptable performance (10 fps) and 50
Megabit/second to achieve full performance.

● “Medium quality” JPEG (2X chrominance subsampling, quality=80) was generally observed to
require 10 Megabits/second of bandwidth to achieve acceptable performance and 20
Megabits/second to achieve full performance.

● “Low quality” JPEG (4X chrominance subsampling, quality=30) was generally observed to
require 5 Megabits/second of bandwidth to achieve acceptable performance and 10
Megabits/second to achieve full performance.

● No encoding solution currently available in TurboVNC or VirtualGL produced acceptable
performance on 1 Megabit/second connections. A tighter codec than JPEG is needed to support
1 Megabit/second and smaller pipes. Problem: the codec must also be compressible at 5+
frames/second. We don't know of anything that currently fits this bill.

● The dual-processor Opteron server was able to drive two clients to full capacity, using 100% of
both of its CPUs and nearly 100% of a 100 Megabit/second link. However, the nVidia card in
the server began to produce substantially slower readback performance after a few minutes of
this, for reasons which are unknown. The current provisioning rule of thumb (1 CPU and 50
Megabits/second for each simultaneous user) was validated.

● NX generally produced only marginal performance with VirtualGL, mostly due to its 4-7x
greater encoding time (when compared with TurboVNC.)

● RealVNC's Raw encoding mode proved to be a good solution on gigabit networks, performing
about equally to RGB encoding in TurboVNC but requiring much less bandwidth (due to Zlib
compression, we suspect.) ZRLE and Hextile produced marginal-to-acceptable frame rates
(also on a gigabit connection) but required 2-3X the encoding time of TurboVNC's default
JPEG compression mode.

● TightVNC required more than double the encoding time to compress the same JPEG frames as
TurboVNC, and TightVNC (in the best case) performed only 40% as fast. When displaying to
the Windows client, TightVNC performed less than 1/10 as fast as TurboVNC. TightVNC
produced frames that were only 6% smaller than those of TurboVNC.

● On high-speed connections, the native TurboVNC viewer was observed to be nearly 3X as fast
as the Java viewer. Additionally, the Java viewer's low frame rates caused the TurboVNC
server to spoil more frames, decreasing its efficiency.

34

	A Study of the Performance of
VirtualGL 2.1 and TurboVNC 0.4
	1 The Tools
	1.1 GLXSpheres
	1.2 CPUStat
	1.3 NetTest
	1.4 NISTNet

	2 The Methodology
	3 The Metrics
	4 The Systems
	5 The Results
	5.1 VirtualGL 2.1 vs. VirtualGL 2.0.1 (VGL Image Transport)
	5.2 TurboVNC 0.4 vs. TurboVNC 0.3.3
	5.3 mediaLib 2.4 vs. 2.5
	5.4 32-bit vs. 64-bit
	5.5 Will That Be One CPU or Two?
	5.6 OpenGL vs. X11 Drawing
	5.7 Software Gamma Correction
	5.8 Linux vs. Windows (Client)
	5.9 Linux vs. Solaris (Server)
	5.10 SPARC vs. x86 (Server)
	5.11 RGB vs. JPEG
	5.12 Gigabit vs. 100 Megabit
	5.13 TurboVNC vs. the VGL Image Transport
	5.14 SSL and SSh Encryption

	5.15 X11 Forwarding vs. Direct X11
	5.16 Stereographic Rendering
	5.17 Interactive Performance
	5.18 The Effect of Increasing Network Latency on VirtualGL's Performance
	5.19 The Effect of Decreasing Bandwidth on VirtualGL's Performance
	5.20 Simultaneous Usage by Multiple Clients
	5.21 RealVNC and NX
	5.22 TurboVNC Java Viewer
	5.23 Indirect OpenGL Rendering vs. VirtualGL

	6 Summary

