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This report attempts to characterize the performance of VirtualGL 2.1 and TurboVNC 0.4 across the 
range of supported server and client platforms, across different types of networks, and using a wide 
variety of configuration options.  It also attempts to compare, apples to apples, the performance of the 
current versions of VirtualGL and TurboVNC with their predecessor versions and with current versions 
of other remote display software.

1 The Tools

1.1 GLXSpheres
The GLXSpheres benchmark, which is included in the VirtualGL 2.1 server packages and which is 
described in detail in the VirtualGL User's Guide, is designed to emulate the image output of the old 
nVidia SphereMark demo.  It was discovered, quite by accident, that the SphereMark demo is a good 
testbed  for  studying  the  performance  of  VirtualGL's  image  pipeline.   The  images  generated  by 
SphereMark, and by its open source look-alike GLXSpheres, contain a realistic proportion of solid 
background and smooth-shaded geometry which simulates the workload of images generated by real 
visualization and CAD applications.  The benchmark also contains very few polygons, so when it is run 
in a VirtualGL environment, the performance will always be limited by VirtualGL and never by the 
server's 3D graphics card.

Whether  or  not  GLXSpheres  is  reflective of  the  performance of  any real  application is  left  as  an 
exercise for the reader.  To put this another way, Your Mileage May Vary (YMMV.)

1.2 CPUStat
CPUStat is a simple Linux tool which reads the /proc filesystem to determine the percentage of time 
for which the server CPUs are active.  vmstat on Solaris serves the same purpose.
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1.3 NetTest
NetTest, which is included in the VirtualGL server and client packages, was extended for the purposes 
of  this  study  to  include  a  bandwidth  measurement  tool.   This  new  mode,  enabled  by  invoking 
nettest -bench, measures the aggregate bandwidth usage on a given network interface over a 
given period of time.  Adding this mode to NetTest was necessitated by accuracy issues which were 
discovered in other open source bandwidth measurement solutions, such as IPTraf and NICStat.

1.4 NISTNet
Developed by the National Institute of Standards and Technology, NISTNet is a network performance 
limiter.   It  can be used to artificially add latency to  or  subtract  bandwidth from a Linux network 
connection, simulating a slower network.

2 The Methodology

Benchmarking VirtualGL, or any other complex system, requires a high degree of vigilance.  There is 
always  a  risk  that  a  transient  phenomenon  may  introduce  unwanted  variables  which  affect  the 
consistency or reproducibility of the tests.  The general strategies for benchmarking this system are:  (a) 
run an application which is known to produce steady performance in a local display environment, (b) 
measure this  performance over a relatively long time period,  and (c) where possible,  sanity check 
results against other, independent metrics.

For each client, server, and X server combination, a baseline level of performance was obtained, and 
one parameter at a time was altered and compared to the baseline in order to ascertain that parameter's 
effect on the performance of the system.  The baseline was obtained by running the 64-bit version of 
GLXSpheres in VirtualGL with no frame spoiling:

/opt/VirtualGL/bin/vglrun -sp /opt/VirtualGL/bin/glxspheres64

If the VGL Image Transport was used, then the baseline was measured with the default vglconnect 
options  (X11  tunneled  through  SSh  but  with  no  encryption  or  tunneling  of  the  VirtualGL image 
stream.)

For each test, GLXSpheres was run with its default window size of 1240 x 900 pixels.  Care was taken 
to ensure that the benchmark window was never obscured during any of the tests.  The client screen 
was set to a resolution of 1280 x 1024 pixels to accommodate the benchmark window without clipping. 
When  running  GLXSpheres  in  an  X  proxy  environment,  such  as  TurboVNC,  the  proxy  desktop 
resolution was set to 1240 x 900 pixels, and GLXSpheres was run using full-screen mode:

/opt/VirtualGL/bin/vglrun -sp /opt/VirtualGL/bin/glxspheres64 -fs

This caused GLXSpheres to occupy the entire client area of the X proxy window, which resulted in the 
same coverage of the client desktop as if the benchmark had been run using the VGL Image Transport.
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The benchmark's frame rate was measured from the client's point of view by averaging the output of 
TCBench over a 60-second period (two separate 30-second runs.)  This was sanity checked, where 
possible, with the profiling output of VirtualGL as well as the frame rate reported by GLXSpheres 
itself.   As long as the VGL Image Transport  is  being used with frame spoiling disabled,  then the 
benchmark's reported frame rate is a valid measure of client/server frame rate  The frame rate reported 
by GLXSpheres is additionally valid when using TurboVNC 0.4, as long as frame spoiling is disabled 
in VirtualGL and as long as the network and the TurboVNC viewer are able to process frames as fast as 
the server can compress and send them.  In cases where the frame rate was somewhat high (generally 
30+ frames/second), it was necessary to increase the sampling rate of TCBench (tcbench -s100) to 
obtain accurate results.

While the benchmark was running, the average CPU usage across all server CPUs was measured by 
running /opt/VirtualGL/bin/cpustat (Linux) or vmstat 5 (Solaris) on the server.  These 
programs were allowed to run until the average CPU usage converged to a consistent value.

While the benchmark remained running, the average bandwidth usage for the server's network device 
was measured by running  /opt/VirtualGL/bin/nettest -bench <device> 25 on the 
server, and the average of the second and third results were taken (this equates to the average network 
bandwidth for a 50-second period.)

3 The Metrics

While frame rate is a useful metric, it does not tell the whole story.  The reason is that the frame rate in 
any thin client system is often limited by the client's (in)ability to decompress and draw the frames.  If 
two tests produced the same frame rate, it would be impossible to tell whether one test used more CPU 
or network resources than the other.  As long as the resource consumption was within the limits of what 
the server and the network could handle, then the difference in resource consumption would not reveal 
itself in a simple comparison of client/server frame rates.

One must instead look at the average CPU and network usage on the server to ascertain which modes 
of operation made more efficient use of these resources.   Why this  is  important is  that  VirtualGL 
servers are usually provisioned for more than one simultaneous user.  It is important to understand how 
many VirtualGL users can potentially co-exist  on a given server  platform and network connection 
without bogging down either.  In this study, four metrics were used to ascertain this:  “CPU-limited 
frame rate”, “encoding time”, “network-limited frame rate”, and “frame size.”

The CPU-limited  frame rate  is,  simply put,  the  frame rate  at  which VirtualGL could theoretically 
deliver frames if the server CPUs were the only bottleneck.  It is computed by dividing the actual 
client/server frame rate (in frames/second) by the average server CPU utilization.  For instance, if the 
actual frame rate was 22 frames/second and the server's CPUs were, on average, 60% busy, then the 
CPU-limited frame rate was 22 / 0.60 = 37 frames/second.  This tells us that, if a second user were to 
start using VirtualGL on the same server, there is a possibility that the first user's performance would 
slow down a bit (assuming that both users were actively manipulating a 3D scene at the same time, and 
assuming that both users were connected to the server via similar clients and networks.)  If the actual 
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frame rate equals the CPU-limited frame rate, then the server's CPUs are maxed out, and the server 
cannot accommodate additional users without a proportional drop in performance.  The CPU-limited 
frame rate defines how efficiently the server CPUs were used when compressing and sending each 
frame.  A higher value means that the CPUs took less time to compress each frame and were thus used 
more efficiently.

Encoding time is the reciprocal of the CPU-limited frame rate.  It defines the amount of CPU time 
(usually  expressed  in  milliseconds)  that  it  took  the  server,  on  average,  to  encode  each  frame  for 
transmission.  This document usually reports absolute figures in terms of CPU-limited frame rate but 
will  sometimes  refer  to  their  relative  differences  using  encoding  time,  since  encoding  time  is  an 
intuitively easier concept to grasp.

The network-limited frame rate is the frame rate at which VirtualGL could theoretically deliver frames 
to  the client  if  the network was the only bottleneck.   Network-limited frame rate  is  computed by 
dividing the theoretical network bandwidth (in Megabits/second) by the actual network usage and then 
multiplying by the actual frame rate.  For instance, if a test generated an average frame rate of 20 
frames/second using 60 Megabits/second of bandwidth on a 100 Megabit/second network, then the 
network-limited frame rate was 100 / 60 * 20 = 33 frames/second.  If two users had to share this 100 
Megabit/second interconnect, then there is a good chance that they would both observe performance 
degradation when simultaneously manipulating a 3D scene in VirtualGL.

The last metric, frame size, is closely related to network-limited frame rate.  Frame size is simply the 
number  of  megabits  of  data,  on  average,  that  are  required  to  represent  a  single  frame  of  the  3D 
animation on the network.  It is computed by dividing the average network usage by the frame rate. 
For instance, (60 Megabits/second) / (22 frames/second) = 2.73 Megabits/frame.  It is easy to derive the 
compression ratio from this figure if you know the size of the image.  In the case of GLXSpheres, the 
image contains 1240 x 900 = 1,116,000 pixels.  Each pixel initially contains 24 bits, so the compression 
ratio for the above example is (1.12 Megapixels/frame) * (24 bits/pixel) / (2.73 Megabits/frame) = 9.8.

Returning to the definition of network-limited frame rate, it is now easy to see that it is simply the 
theoretical network bandwidth (in Megabits/second) divided by the frame size (in Megabits/frame.) 
So, for instance, if a particular protocol had a frame size of 2 Megabits, 50 frames/second could be 
accommodated on a 100 Megabit/second link, assuming no other performance bottlenecks.

For the purposes of this document, 1 Megabit = 1,000,000 bits, not 1,048,576 bits.  This is the common 
usage when referring to the speed of networks.
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4 The Systems
The test systems consisted of “typical” workstation platforms that might be used with VirtualGL:

SPARC server and client:

● Dual-processor (1.6 GHz UltraSPARC III) Sun Ultra45

● 2 GB memory

● Sun XVR-2500 framebuffer

○ Driver patch 120928-22

● Sun OpenGL v1.5, patch 120812-22

● Solaris 10 6/06 + all patches up to 10/31/07

○ Sun mediaLib 2.5

x86 server:

● Sun Ultra20 with 2.4 GHz dual-core AMD Opteron 180

● 2 GB memory

● nVidia QuadroFX 1400

○ Driver version 100.14.19

● Solaris 10 Update 4

○ Sun mediaLib 2.5

● CentOS Enterprise Linux 5.0

x86 client:

● Sun w1100z with single 1.8 GHz AMD Opteron 144

● 512 MB memory

● nVidia QuadroFX 3000

○ Driver version 100.14.19 (Linux) and 81.67 (Windows)

● Windows XP Service Pack 2

○ Hummingbird Exceed 3D 2008

● CentOS Enterprise Linux 5.0
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5 The Results

5.1 VirtualGL 2.1 vs. VirtualGL 2.0.1 (VGL Image Transport)
No significant differences were observed between the performance of VirtualGL 2.0.1 and VirtualGL 
2.1 when running on Linux or Windows systems.  However, there was marked improvement between 
VirtualGL 2.0.1 and VirtualGL 2.1 on Solaris/SPARC systems.  This increase in performance was due 
to  optimized  Huffman  coding  routines,  which  were  contributed  to  TurboJPEG/mediaLib  by  the 
mediaLib authors.

Comparison of VGL Image Transport Performance Between VirtualGL 2.0.1 and VirtualGL 2.1 
Servers (Connecting to VirtualGL 2.1 Client)

Actual Frame 
Rate

(VGL 2.0.1)

Actual Frame 
Rate

(VGL 2.1)
[Baseline]

CPU-Limited 
Frame Rate
(VGL 2.0.1)

CPU-Limited 
Frame Rate
(VGL 2.1)
[Baseline]

SPARC →
Windows

18.62 23.75
(+28%)

29.09 38.93
(+34%)

SPARC →
Windows
(VGL_NPROCS=2)

23.51 23.17
(-1.4%)

28.66 37.37
(+30%)

Solaris/x86
(32-bit) →
Windows

20.08 23.04
(+15%)

34.62 39.04
(+13%)

Solaris/x86
(64-bit) →
Windows

23.09 23.01
(-0.35%)

47.12 46.96
(-0.34%)

Comparison of VGL Image Transport Performance Between VirtualGL 2.0.1 and VirtualGL 2.1 
Clients (Connecting to VirtualGL 2.1 Server)

Actual Frame 
Rate

(VGL 2.0.1)

Actual Frame 
Rate

(VGL 2.1)
[Baseline]

Linux →
SPARC

22.57 33.19
(+47%)

With VGL 2.0.1,  it  took two compression threads on the SPARC server to  drive the client  at  full 
capacity.  With VGL 2.1, this could be achieved with only one compression thread, thanks to the 34% 
more efficient use of the server's CPUs.
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For the Solaris/x86 server, the optimized Huffman routines only improved the performance of the 32-
bit  VirtualGL server  components.   However,  the  Solaris/x86  server  realized  a  huge  performance 
improvement across the board by upgrading from mediaLib 2.4 (the version included with Solaris 10) 
to mediaLib 2.5 (available from  http://www.sun.com/processors/vis/mlib.html).  See below for more 
details.

5.2 TurboVNC 0.4 vs. TurboVNC 0.3.3
In order to discuss what has changed between TurboVNC 0.3.3 and 0.4, it is first necessary to discuss 
how VNC works.  The RFB protocol, on which VNC is based, is a client-driven protocol.  Most other 
remote  display  protocols  (including  the  VGL Image  Transport,  X11,  RDP,  etc.)  are  server-driven 
protocols.  With a server-driven protocol, the server pushes image updates to the remote display client, 
usually unprompted.  With VNC, on the other hand, the server will not send pixels to a VNC viewer 
unless the viewer explicitly requests a framebuffer update.

After initialization, the VNC viewer sends an initial framebuffer update request to obtain the entire 
contents of the server's virtual framebuffer.  After that, it can send incremental update requests to obtain 
only modified regions of the framebuffer.  When a framebuffer update request is received by the VNC 
server, the server first checks to see if there are any modified pixels to be sent.  If so, then those pixels 
are  immediately  compressed  and  sent  to  the  viewer  as  a  framebuffer  update.   The  viewer  then 
decompresses and draws the update before sending a request for another update.  Meanwhile, the VNC 
server processes X11 requests from applications while it is waiting for the next update request from the 
viewer.

This works OK on low-latency networks, but on high-latency connections, it's problematic.  Since the 
server  is  waiting on the  viewer and the  viewer  is  waiting  on the server,  each framebuffer  update 
requires a round trip from server to viewer.  As the latency of the network increases, it begins to take as 
much time to transmit each frame as it does to encode or decode it, and this causes the frame rate to 
drop severely.  In the VGL Image Transport and other streaming image protocols, network latency is 
“hidden” by pipelining the various stages of image transmission.   The client  can be decoding and 
drawing one frame while it is receiving another and while the server is encoding yet another.  With a 
client-driven  protocol,  however,  such  pipelining  is  impossible,  because  the  next  frame  cannot  be 
encoded by the server until the previous one has been decoded by the client.

Beginning with TurboVNC 0.3.2, an attempt was made to pipeline at least part of the RFB protocol. 
This was accomplished by modifying the TurboVNC viewer such that it sent a new framebuffer update 
request before decoding the previous update, rather than after.  This allowed at least part of the network 
latency  to  be  hidden,  which  significantly  improved  TurboVNC's  performance  on  high-latency 
networks.   However,  it  was  discovered  that  this  optimization  slowed performance  on  low-latency 
networks.  The reasons why were not well understood at the time, and in TurboVNC 0.3.3, a “High-
Latency Network” switch was introduced as a compromise.  This switch allowed one to turn off the 
pipelined update request optimization when using TurboVNC on low-latency networks.

One of the goals for TurboVNC 0.4 was to eliminate this “High-Latency Network” switch, since it was 
often a source of confusion for users.  So we set out to uncover the reason why enabling pipelined 
update requests decreased performance on low-latency networks.  As it turns out, the reason has to do 
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with a feature of the VNC server called “deferred updates.”  As with many X servers, the VNC X 
server is single-threaded.  The server is essentially an infinite loop that continuously polls for requests 
from either an X application or a connected VNC viewer.  If the VNC server receives a drawing request 
from an X application,  the server will  check to see if  there  is  an unprocessed framebuffer update 
request from a VNC viewer.  If so, it will trigger a deferred framebuffer update and return to its main 
loop.  The loop continues to check the deferred update timer, and once the timer has elapsed, then the 
deferred update will be immediately sent to the viewer.  If an X drawing request is received and no 
framebuffer update request is pending, then the VNC server marks the drawing region as modified. 
Modified regions will then be sent immediately the next time an update request is received from the 
viewer.  The deferred update timer is meant to act as a sort of caching mechanism, allowing many small 
framebuffer updates to be combined into one larger update.

Whether or not a framebuffer update is deferred or sent immediately depends on when the framebuffer 
update request is received from the viewer.  If a new update request is received very soon after the 
previous update is sent, then chances are that the framebuffer will not yet have been modified relative 
to the previous update.  Thus, the update request will not actually be processed until the next time an 
X11 drawing command occurs, at which point a deferred update request will be triggered.  If, however, 
a  new framebuffer  update  request  arrives  somewhat  after  the previous  update  has  been  sent,  then 
chances  are  that  the  framebuffer  will  have  been  modified,  and  thus  a  new  update  will  be  sent 
immediately.

To make a long story short, if the pipelined update request feature (the “High-Latency Network” switch 
in TurboVNC 0.3.3) was turned on when connecting over a low-latency network, it caused almost all of 
the framebuffer update requests to be deferred in the VNC server.  This is a problem, because the 
default value of the deferred update timer in VNC is 40 ms.  Thus, an additional 40 ms delay was being 
introduced into every frame.  TurboVNC 0.4's solution was to reduce the deferred update timer to 1 ms. 
This  allowed  pipelined  update  requests  to  be  used  on  low-latency networks  with  no  performance 
penalty.  Thus, the “High-Latency Network” switch could be hard-wired to on and removed from the 
TurboVNC Viewer interface.

Note  that  turning  off  the  deferred  update  mechanism altogether  (setting  the  timer  to  0)  produced 
undesirable performance effects, such as a perceivable lag when typing text into an xterm window.  It 
seems that the deferred update mechanism works as designed, but the default timer value was simply 
too high to perform well with TurboVNC's other optimizations.

Additional performance improvements were realized in the SPARC version of TurboVNC 0.4 due to 
the same TurboJPEG/mediaLib Huffman coding optimizations described earlier.

The following tests  compared the end-to-end performance of TurboVNC 0.3.3 and TurboVNC 0.4 
when using optimal settings for a low-latency network.
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Performance Comparison Between TurboVNC 0.3.3 Server/Viewer (“High-Latency Network” 
Switch Turned Off) and TurboVNC 0.4 Server/Viewer

Actual Frame 
Rate

(TurboVNC 0.3.3)

Actual Frame 
Rate

(TurboVNC 0.4)
[Baseline]

CPU-Limited 
Frame Rate 

(TurboVNC 0.3.3)

CPU-Limited 
Frame Rate 

(TurboVNC 0.4)
[Baseline]

Linux →
Linux

23.90 28.44
(+19%)

36.59 42.45
(+16%)

SPARC →
Windows

14.60 17.21
(+18%)

23.17 25.69
(+11%)

Solaris/x86 →
Windows

19.37 22.70
(+17%)

30.26 34.92
(+15%)

No significant improvement was observed (or expected) in the Windows or Linux TurboVNC viewers. 
The performance improvement observed above was due to the combination of reducing the deferred 
update timer to 1 ms (from 40 ms) and pipelining the framebuffer update requests from the client. 
Additionally, the SPARC server realized some improvement from the Huffman coding optimizations.

The following test compared the TurboVNC 0.3.3 and TurboVNC 0.4 viewers, in an attempt to isolate 
the performance improvement due to the Huffman coding optimizations.  The TurboVNC 0.4 server 
was used in both cases, and the “High-Latency Network” switch was turned on in the TurboVNC 0.3.3 
viewer to simulate the behavior of the TurboVNC 0.4 viewer.

Actual Frame 
Rate

(TurboVNC 0.3.3)

Actual Frame 
Rate

(TurboVNC 0.4)
[Baseline]

Linux →
SPARC

21.13 24.26
(+15%)

In  general,  the  performance  improvements  in  TurboVNC  0.4  were  only  observed  on  low-latency 
network connections.  The performance improvements between TurboVNC 0.3.3 and TurboVNC 0.4 
were barely measurable on high-latency connections.

5.3 mediaLib 2.4 vs. 2.5
When the Solaris/x86 server was upgraded from mediaLib 2.4 (the version included with Solaris 10) to 
mediaLib 2.5, the performance of VirtualGL and TurboVNC improved dramatically.
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Comparison of VGL Image Transport Performance When Using mediaLib 2.4 and mediaLib 2.5

Actual Frame 
Rate

(mediaLib 2.4)

Actual Frame 
Rate

(mediaLib 2.5)
[Baseline]

CPU-Limited 
Frame Rate 

(mediaLib 2.4)

CPU-Limited 
Frame Rate 

(mediaLib 2.5)
[Baseline]

Solaris/x86
(32-bit) →
Windows

11.66 23.04
(+98%)

21.20 39.04
(+84%)

Solaris/x86
(64-bit) →
Windows

16.95 23.01
(+36%)

29.73 46.96
(+58%)

Comparison of TurboVNC Performance When Using mediaLib 2.4 and mediaLib 2.5

Actual Frame 
Rate

(mediaLib 2.4)

Actual Frame 
Rate

(mediaLib 2.5)
[Baseline]

CPU-Limited 
Frame Rate 

(mediaLib 2.4)

CPU-Limited 
Frame Rate 

(mediaLib 2.5)
[Baseline]

Solaris/x86 →
Windows

13.46 22.70
(+69%)

22.81 34.92
(+53%)

The vast  improvement  in  32-bit  performance went  a long way toward closing the severe gap that 
existed between the performance of 32-bit and 64-bit Solaris/x86 versions of mediaLib 2.4

There was no significant difference observed between the performance of mediaLib 2.4 and mediaLib 
2.5 on SPARC systems.

5.4 32-bit vs. 64-bit
The only platform on which  32-bit  code  performed significantly differently from 64-bit  code was 
Solaris/86.   While  the  performance  of  32-bit  code  improved  vastly  in  the  Solaris/x86  version  of 
mediaLib 2.5 (as shown above), the 64-bit version was still found to be 20% more efficient in its use of 
the server's CPUs (a 20% higher CPU-limited frame rate) than the 32-bit version.  Both 32-bit and 64-
bit versions, however, were able to drive all of the client platforms to full capacity, so the efficiency 
differences would only be observable in a multi-user environment.

5.5 Will That Be One CPU or Two?
The question of whether or not a second CPU benefits VirtualGL is complex.  Certainly, multiple CPUs 
are  tremendously beneficial  when multiple  users  are  sharing the VirtualGL server.   But  whether  a 
multiple-CPU system will improve a single user's performance depends on the speed of the client and 
the efficiency of the server.  The following table demonstrates the general effectiveness of adding a 
second CPU on the test servers:
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Improvement in VGL Image Transport Performance Due to Adding a Second CPU

Actual Frame 
Rate

(1 CPU)

Actual Frame 
Rate

(2 CPUs)
[Baseline]

CPU-Limited 
Frame Rate

(1 CPU)

CPU-Limited 
Frame Rate

(2 CPUs)
[Baseline]

Linux →
Windows

22.76 24.01
(+5.5%)

29.91 54.82
(+83%)

SPARC →
Windows

19.96 23.75
(+19%)

19.96 38.93
(+95%)

Solaris/x86
(32-bit) →
Windows

20.30 23.04
(+13%)

20.30 39.04
(+92%)

Solaris/x86
(64-bit) →
Windows

23.01 23.01
(+0.0%)

23.72 46.96
(+98%)

As you can  see,  in  a  single-user  environment,  the  second CPU is  only beneficial  if  the  server  is 
inefficient enough to require more than one CPU to drive the client.  Otherwise,  the frame rate is 
limited by the client,  and the second CPU has little benefit  to the single user.   These figures also 
demonstrate that allocating one CPU per active user is a good rule of thumb, since a single client can 
easily use all or nearly all of the resources of a single server CPU whenever the client is running at full 
capacity.

Improvement in VGL Image Transport Performance Due to Adding a Second Compression 
Thread

Actual Frame 
Rate

(VGL_NPROCS=1)
[Baseline]

Actual Frame 
Rate

(VGL_NPROCS=2)

CPU-Limited 
Frame Rate

(VGL_NPROCS=1)
[Baseline]

CPU-Limited 
Frame Rate

(VGL_NPROCS=2)

Linux →
Windows

24.01 23.04
(-4.0%)

54.82 45.70
(-17%)

SPARC →
Windows

23.75 23.17
(-2.4%)

38.93 37.37
(-4.0%)

Solaris/x86 →
Windows

23.01 22.60
(-1.8%)

46.96 46.12
(-1.8%)

Adding a  second compression thread might be beneficial  if  the client  was faster  or if  each of the 
individual server CPUs was slower.  In Section  5.1, adding a second compression thread was also 
shown to be of some benefit in cases where the server's CPUs were being used inefficiently (such as in 
the SPARC version of VirtualGL 2.0.x.)  However, with VirtualGL 2.1 and with these specific test 
machines, it was observed that one compression thread was sufficient on all server platforms to drive 
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the client to full capacity.  Thus, adding a second compression thread only decreased the efficiency of 
the server without producing any increase in actual frame rate.

5.6 OpenGL vs. X11 Drawing
The VirtualGL client can draw images using either OpenGL or X11 commands.  The use of OpenGL 
drawing is automatic (and necessary) when the VirtualGL client draws quad-buffered stereo images. 
Otherwise, OpenGL is used by default on Solaris/SPARC clients with 3D accelerators, and X11 is used 
by default on other platforms.

Comparison Between the Performance of OpenGL and X11 Drawing in the VirtualGL Client

Actual Frame Rate
(X11 Drawing)

Actual Frame Rate
(OpenGL Drawing)

Linux →
Linux

23.51
[Baseline]

26.41
(+12%)

Linux →
SPARC

18.54
(-44%)

33.19
[Baseline]

Linux →
Windows

24.01
[Baseline]

17.64
(-27%)

This validates VirtualGL's choice of default drawing methods on Windows clients (X11) and Solaris 
clients (OpenGL.)  SPARC systems can send packed (3-byte) pixels to the framebuffer when using 
OpenGL, which is a large reason why OpenGL drawing is so much faster on these systems than X11 
drawing  (which  is  forced  to  use  4-byte  pixels.)   Most  other  platforms  use  4-byte  pixels  for  both 
OpenGL and X11.

The  decrease  in  performance  on  Windows  seemed  to  be  due  to  overhead  incurred  by  the 
glDrawPixels() operation  in  Exceed 3D.   Low-level  benchmarks  showed that,  in  Exceed 3D 
2008, drawing an image using  glDrawPixels() was only about 1/5 as fast as drawing the same 
image using XShmPutImage().

OpenGL performed  better  than  X11  for  this  specific  Linux  client  configuration,  but  there  is  a 
tremendous amount of variability in Linux graphics adapters.  Many graphics adapters that one might 
find on a Linux PC client might not have accelerated OpenGL at all, so X11 is the safer default choice 
(and it performs well enough in this case as well.)

5.7 Software Gamma Correction
When  an  OpenGL application  is  displayed  locally  on  a  Solaris/SPARC  workstation,  the  default 
behavior  of  Sun OpenGL is  to  gamma correct  the  output  of  the  OpenGL application.   VirtualGL 
simulates this behavior when remotely displaying from a Solaris/SPARC server to any type of client.  If 
the client machine is also a SPARC machine, then VirtualGL will try to use a gamma-corrected X 
visual (thus allowing the graphics hardware on the SPARC client to perform the gamma correction.) 
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Otherwise,  VirtualGL  will  perform  gamma  correction  internally.   VirtualGL's  internal  gamma 
correction  mechanism can  also  be  manually  enabled  when  remotely  displaying  from non-SPARC 
servers.  The following table shows the effect that VirtualGL's internal gamma correction mechanism 
has on the overall performance of the system when using the VGL Image Transport.

The Effect of Software Gamma Correction on the Performance of the VGL Image Transport 

Actual Frame 
Rate

(no gamma)

Actual Frame 
Rate

(S/W gamma)

CPU-Limited 
Frame Rate
(no gamma)

CPU-Limited 
Frame Rate

(S/W gamma)
Linux →
Windows

24.01
[Baseline]

23.95
(-0.25%)

54.82
[Baseline]

43.15
(-21%)

SPARC →
Windows

23.50
(-1.1%)

23.75
[Baseline]

43.52
(+12%)

38.93
[Baseline]

Solaris/x86 →
Windows

23.01
[Baseline]

23.34
(-1.4%)

46.96
[Baseline]

43.22
(-8.0%)

Although enabling gamma correction did increase the encoding time, the effect on actual frame rate 
was negligible.  The increase in encoding time was greater on the Linux server because the Linux 
version of VirtualGL uses straight C code to perform software gamma correction.  The Solaris version 
of VirtualGL uses mediaLib to accelerate this task, and thus the encoding time increased less on Solaris 
servers when enabling software gamma correction.

Enabling  gamma correction decreased  the  frame size  by 4-7%.  This  makes  intuitive  sense,  since 
gamma correction linearizes the color gradients used in Goraud shading and thus decreases the high 
frequency components  in  the image,  allowing the JPEG compression algorithm to compress  more 
efficiently.

5.8 Linux vs. Windows (Client)
Generally,  no  significant  differences  were  observed  between  the  performance  of  the  Linux  and 
Windows versions of VirtualGL when running on the same x86 client machine.  There were a few 
notable exceptions, however:

● OpenGL drawing performed about 50% faster on the Linux client, due to the performance 
limitations of Exceed 3D which were described above.

● Quad-buffered stereo was 59% faster on the Linux client due to the same Exceed 3D 
performance limitations.

● SSh tunneling of the VGL Image Transport performed 34% faster on the Linux client due to 
performance limitations of PuTTY.  SSh tunneling of the TurboVNC connection was 58% faster 
on the Linux client due to the same performance limitations.

● RGB image decoding was 19% faster when displaying to the Linux client (over a gigabit 
connection.)
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● The transparent overlay test in GLXSpheres (/opt/VirtualGL/bin/vglrun -sp 
/opt/VirtualGL/bin/glxspheres64 -o) performed about 25% slower on the Linux 
client.  The Linux nVidia drivers have historically not provided good performance when 
drawing pixels to a transparent overlay, and this seemed to be the portion of the test that caused 
the slow-down.

These disparities all involve limitations in the performance of one or more client software components, 
so  they  would  not  be  likely  to  reveal  themselves  if  the  server  or  the  network  was  the  primary 
performance bottleneck (which would be the case when running on a low-bandwidth network,  for 
instance.)

5.9 Linux vs. Solaris (Server)
Generally, no significant differences in actual frame rate were observed when remotely displaying from 
the x86 server running Linux and from the same x86 server running Solaris.  However, for the baseline 
tests, the following differences in encoding time were observed:

● When using the VGL Image Transport, the 64-bit VirtualGL libraries on Solaris/x86 required 
17% more time to encode each frame than the equivalent VirtualGL libraries on Linux (in other 
words, VirtualGL/Linux had a 17% higher CPU-limited frame rate.)

● When using the VGL Image Transport, the 32-bit VirtualGL libraries on Solaris/x86 required 
41% more time to encode each frame than the equivalent VirtualGL libraries on Linux.

● TurboVNC on Solaris/x86 required 16% more time to encode each frame than TurboVNC on 
Linux.

While this efficiency gap has closed dramatically with the introduction of mediaLib 2.5, mediaLib 2.5 
still uses more CPU cycles than the Intel Performance Primitives to compress the same JPEG images 
on the same hardware.  This disparity affected the overall availability of the server's CPUs, but it did 
not cause any difference in actual frame rate.  However, such a difference might reveal itself if multiple 
users were sharing the server.

The Solaris/x86 TurboJPEG codec produced frames that were about 10-15% larger across the board 
than the Linux version of the codec.  This disparity in frame size would be unlikely to affect actual 
performance unless the network were the primary bottleneck.
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5.10 SPARC vs. x86 (Server)
The following table lists several performance comparisons between the SPARC and x86 test servers, 
both running Solaris 10 and displaying to the Windows client:

Actual Frame 
Rate

(SPARC Server)

Actual Frame 
Rate

(x86 Server)

CPU-Limited 
Frame Rate

(SPARC Server)

CPU-Limited 
Frame Rate
(x86 Server)

[Baseline]
(VGL Image Transport)

23.75 23.01
(-3.1%)

38.93 46.96
(+21%)

32-bit
(VGL Image Transport)

23.85 23.04
(-3.3%)

39.74 39.04
(-1.8%)

RGB
(VGL Image Transport)

27.58 29.36
(+6.5%)

49.25 88.97
(+81%)

Anaglyphic Stereo 
(VGL Image Transport)

11.79 21.34
(+81%)

25.63 33.34
(+30%)

[Baseline]
(TurboVNC)

17.21 22.70
(+32%)

25.69 34.92
(+36%)

RGB
(TurboVNC)

15.29 18.34
(+20%)

23.89 49.57
(+108%)

Although both servers were able to drive the client to full capacity in most cases, the SPARC server 
generally required more CPU time to do so.  One may wonder why the x86 server performed 81% 
faster when rendering anaglyphic stereo than the SPARC server, when it was only 30% more efficient. 
This  reveals  a  bottleneck  in  the  XVR-2500  framebuffer  and  drivers.   When  VirtualGL performs 
anaglyphic  stereo  rendering,  it  reads  back  individual  color  channels  (GL_RED,  GL_GREEN,  and 
GL_BLUE) from the 3D graphics card to  build  the anaglyph.  On nVidia  hardware,  reading back 
GL_RED, GL_GREEN, and GL_BLUE separately performs the same as if the entire image had been 
read back at  once using GL_RGB.  On the XVR-2500, however,  reading back an individual color 
channel is significantly slower than reading back the entire framebuffer as RGB, and reading back all 
three color channels in sequence is slower still.

While it is true that comparing SPARC and x86 servers is not truly an “apples to apples” comparison, 
both of the workstations used in this test were current offerings in Sun's workstation product line at the 
time of publication.  In fact, the SPARC workstation was the highest-end SPARC workstation that Sun 
produced at the time of this writing, and the x86 workstation was a lower-end model.

5.11 RGB vs. JPEG
When  using  the  VGL Image  Transport  over  the  baseline  gigabit  link,  RGB  encoding  generally 
produced faster results than JPEG encoding.  RGB also required significantly less CPU time on the 
server, but it required significantly more network bandwidth:
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Comparison of the Performance of JPEG and RGB Encoding When Using the VGL Image 
Transport

Actual 
Frame Rate

(JPEG)
[Baseline]

Actual 
Frame Rate

(RGB)

CPU-
Limited 

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited 

Frame Rate
(RGB)

Network-
Limited 

Frame Rate
(JPEG)

[Baseline]

Network-
Limited 

Frame Rate
(RGB)

Linux →
Linux

23.51 32.51
(+38%)

56.10 95.62
(+70%)

510.7 40.48

Linux →
SPARC

33.19 25.15
(-24%)

60.57 90.13
(+48%)

512.5 40.41

Linux →
Windows

24.01 27.27
(+14%)

54.82 90.28
(+65%)

499.4 40.60

SPARC →
Windows

23.75 27.58
(+16%)

38.93 49.25
(+26%)

499.1 39.36

Solaris/x86→
Windows

23.01 29.36
(+28%)

46.96 88.97
(+89%)

432.3 39.01

The conclusion one can draw from this is that RGB encoding might be beneficial for point-to-point 
(single  user)  remote  display in  cases  where the server  CPU resources  are  more precious  than  the 
network resources and there is gigabit switched Ethernet between the server and the client.  However, 
in  a  multi-user  environment,  RGB encoding quickly becomes  an  untenable  proposition.   A single 
gigabit link could not have even supported two concurrent clients using RGB encoding at the above 
frame rates.  RGB is also not a tenable proposition for anything slower than gigabit.  For these specific 
test cases, RGB encoding required about 25 Megabits to represent each frame.  This frame size is 
significantly smaller than that of the X11 Image Transport, since RGB encoding transfers only 24 bits 
per pixel instead of 32.  RGB encoding can also take advantage of VirtualGL's inter-frame differencing 
mechanism to further reduce the average frame size.  However, 25 Megabits/frame is still far too large 
to achieve decent frame rates on even a 100 Megabit link.
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Comparison of the Performance of JPEG and RGB Encoding When Using the VGL Image 
Transport (Quad-Buffered Stereo)

Actual 
Frame Rate

(JPEG)
[Baseline]

Actual 
Frame Rate

(RGB)

CPU-
Limited 

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited 

Frame Rate
(RGB)

Network-
Limited 

Frame Rate
(JPEG)

[Baseline]

Network-
Limited 

Frame Rate
(RGB)

Linux →
Linux

12.67 16.45
(+30%)

26.83 34.85
(+30%)

235 19.35

Linux →
Windows

8.00 8.11
(+1.4%)

22.59 44.81
(+98%)

243 19.11

When used with the Linux client, RGB encoding provided significantly better stereo performance on a 
gigabit link than JPEG encoding.  However, this was at the expense of even more network bandwidth 
usage.  As one can see from the table above, driving the client with a decent frame rate required almost 
all of the available bandwidth.

Comparison of the Performance of JPEG and RGB Encoding When Using TurboVNC

Actual 
Frame Rate

(JPEG)
[Baseline]

Actual 
Frame Rate

(RGB)

CPU-
Limited 

Frame Rate
(JPEG)

[Baseline]

CPU-
Limited 

Frame Rate
(RGB)

Network-
Limited 

Frame Rate
(JPEG)

[Baseline]

Network-
Limited 

Frame Rate
(RGB)

Linux →
Linux

28.44 25.66
(-9.8%)

42.45 64.62
(+52%)

463.8 29.53

Linux →
SPARC

24.26 11.17
(-54%)

37.37 43.13
(+15%)

471.2 26.77

Linux →
Windows

26.08 18.28
(-30%)

40.62 42.60
(+4.9%)

454.3 25.50

SPARC →
Windows

17.21 15.29
(-11%)

25.69 23.89
(-7.0%)

472.5 26.59

Solaris/x86→
Windows

22.70 18.34
(-19%)

34.92 49.57
(+42%)

415.1 25.41

With TurboVNC, the results were mixed.  The RGB codec in TurboVNC is essentially the same as the 
Raw codec in TightVNC, with few or no optimizations.  Prior to sending the pixels, this encoding 
scheme converts them into the format preferred by the client's display, and this format usually contains 
32 bits per pixel and not 24.  This, combined with the lack of inter-frame differencing, produced frame 
sizes 40-60% larger than the RGB encoding implementation in the VGL Image Transport.  At these 
frame sizes, a single user came close to saturating the entire gigabit link.
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In general, the combination of larger frame sizes and pixel conversion overhead caused the frame rates 
to  drop across the board,  when compared to  the JPEG baseline tests.   In some cases,  such as the 
SPARC client, this drop in performance was dramatic.  As the frame rate dropped, more and more 
frames began to be spoiled on the server, which decreased its efficiency.  In the SPARC → Windows 
case, this efficiency decrease caused the RGB test to perform less efficiently than even the JPEG test.

In certain cases, RGB encoding in TurboVNC might still be advantageous, but the advantages are much 
less clear than in the VGL Image Transport.  For those desiring a lossless compression solution in 
TurboVNC, the Lossless Refresh feature might be a better option than RGB encoding.

5.12 Gigabit vs. 100 Megabit
When driving the client to full capacity,  VirtualGL generally used less than 50 Megabits/second of 
network bandwidth in the baseline configuration.  Thus, if the server had a 100 Megabit interconnect, it 
could have accommodated two users before saturating the interconnect.

There  were,  however,  some features  in  VirtualGL which  required  gigabit  connectivity  in  order  to 
achieve decent performance:

● RGB encoding required generally about 25 Megabits/frame when using the VGL Image 
Transport and 35-40 Megabits/frame when using TurboVNC, and thus it was limited to 2-4 
frames/second on a 100 Megabit link.

● Since it uses the X11 Image Transport, synchronous mode (VGL_SYNC=1) required 36-38 
Megabits/frame when displayed to a remote X server.  It was thus limited to less than 3 
frames/second on a 100 Megabit link.

● Since it uses the X11 Image Transport but transfers only 1 byte/pixel, color index rendering 
required about 9 Megabits/frame when displayed to a remote X server.  This produced usable 
performance on a 100 Megabit link, but gigabit was required to drive the client to full capacity.

The conclusion one can draw is that gigabit is a good idea for the server network, but 100 Megabit 
switched Ethernet to each client (or even wireless) should provide more than enough bandwidth for 
VirtualGL or TurboVNC when using the default (perceptually lossless JPEG) encoding setting.
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5.13 TurboVNC vs. the VGL Image Transport

Comparison of Baseline Performance Between the VGL Image Transport and TurboVNC

Actual Frame 
Rate

(VGL Image 
Transport)

Actual Frame 
Rate

(TurboVNC)

CPU-Limited 
Frame Rate
(VGL Image 
Transport)

CPU-Limited 
Frame Rate
(TurboVNC)

Linux →
Linux

23.51 28.44
(+21%)

56.10 42.45
(-24%)

Linux →
SPARC

33.19 24.26
(-27%)

60.57 37.37
(-38%)

Linux →
Windows

24.01 26.08
(+8.6%)

54.82 40.62
(-26%)

SPARC →
Windows

23.75 17.21
(-28%)

38.93 25.69
(-34%)

Solaris/x86→
Windows

23.01 22.70
(-1.3%)

46.96 34.92
(-26%)

Although  greatly  improved  vs.  TurboVNC  0.3.3,  TurboVNC  0.4  on  SPARC  servers  still  has 
performance issues which bear further investigation.  TurboVNC on Linux was generally observed to 
be faster than the VGL Image Transport.  On Solaris/x86, the two systems performed at parity, although 
the VGL Image Transport was significantly more efficient in its use of the server CPUs (as was the case 
on all server platforms.)

The VGL Image Transport produced 4-10% smaller frames than TurboVNC, due primarily to the VGL 
Image Transport's inter-frame differencing mechanism.

19



5.14 SSL and SSh Encryption

Comparison of the Performance of SSL Encryption (vglrun +s) and SSh Encryption 
(vglconnect -s) When Using the VGL Image Transport

Actual 
Frame Rate

(Un-
encrypted)
[Baseline]

Actual 
Frame Rate

(SSL 
Encryption)

Actual 
Frame Rate

(SSh 
Tunneling)

CPU-
Limited 

Frame Rate
(Un-

encrypted)
[Baseline]

CPU-
Limited 

Frame Rate
(SSL 

Encryption)

CPU-
Limited 

Frame Rate
(SSh 

Tunneling)

Linux →
Linux

23.51 18.58
(-21%)

20.67
(-12%)

56.10 41.84
(-25%)

42.44
(-24%)

Linux →
SPARC

33.19 32.56
(-1.9%)

32.57
(-1.9%)

60.57 52.26
(-14%)

53.48
(-12%)

Linux →
Windows

24.01 19.85
(-17%)

PuTTY:
15.44

(-36%)

OpenSSH:
19.22

(-20%)

54.82 44.91
(-18%)

PuTTY:
40.51

(-26%)

OpenSSH:
41.78

(-24%)
SPARC → 
Windows

23.75 19.85
(-16%)

16.45
(-31%)

38.93 33.08
(-15%)

32.25
(-17%)

Solaris/x86 → 
Windows

23.01 19.22
(-16%)

15.44
(-33%)

46.96 41.78
(-11%)

39.58
(-16%)

Tunneling  the  VGL Image  Transport  through  PuTTY (using  vglconnect -s on  the  Windows 
client) generally performed about 20% slower than using VirtualGL's built-in SSL encryption feature 
(vglrun +s).   However,  SSL and SSh performed at  parity on the  SPARC client,  and SSh was 
actually  a  bit  faster  on  the  Linux  client.   Using  Cygwin  OpenSSH  instead  of  PuTTY  (set 
VGLCONNECT_OPENSSH=1) on the Windows client resulted in performance which almost matched 
that of VGL's built-in SSL encryption feature.

In any sense, these results show that, if the performance issue in PuTTY could be eliminated, then 
VirtualGL's built-in SSL encryption feature would no longer be necessary.  It should be made clear that 
these  performance  differences  would  only  reveal  themselves  on  a  high-speed  network.   On  low-
bandwidth and high-latency links, which are the primary environments in which SSh and SSL would be 
used, there was no observed difference between the performance of SSh and SSL.

There was also no significant difference observed between the frame sizes generated by SSL and SSh 
tunneling.
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Comparison of the Performance of SSh Encryption and Unencrypted Transmission When Using 
TurboVNC

Actual Frame Rate
(Un-encrypted)

[Baseline]

Actual Frame Rate
(SSh Tunneling)

CPU-Limited 
Frame Rate

(Un-encrypted)
[Baseline]

CPU-Limited 
Frame Rate

(SSh Tunneling)

Linux →
Linux

28.44 24.44
(-14%)

42.45 36.97
(-13%)

Linux →
SPARC

24.26 22.59
(-6.9%)

37.37 33.42
(-11%)

Linux →
Windows

26.08 PuTTY:
15.46 (-41%)

OpenSSH
21.22 (-19%)

40.62 PuTTY:
21.68 (-47%)

OpenSSH:
30.23 (-26%)

As with the VGL Image Transport, PuTTY's performance lagged significantly behind that of OpenSSH.

The numbers above also reveal one of VNC's dirty little secrets.  As explained in Section 5.2, the VNC 
protocol (RFB) is a client-driven protocol.  Image updates are generally only sent to the client if it 
requests them.  Since the VNC X server is single-threaded, it divides its time between processing X 
requests and processing RFB requests.  If the VNC viewer and the network link are fast enough that 
each frame can be transmitted and decoded in equal or less time than it took to encode the frame, then 
the VNC server will always have a pending framebuffer request, and thus every frame that VirtualGL 
draws into the X server will be sent to the client.  However, if the network or the viewer is too slow to 
keep up with the server, then the server has plenty of time to process multiple  PutImage requests 
from VirtualGL while it is waiting for the next framebuffer update request from the client.  Since these 
interim PutImage requests alter the virtual framebuffer but do not result in pixels being sent to the 
viewer, VNC is effectively spoiling those frames.

In general, this shouldn't be an issue when running interactive applications, because the frame rate of 
interactive applications is gated by mouse movement or other factors.  However, the introduction of 
spurious frame spoiling at low frame rates makes TurboVNC difficult to benchmark accurately, since 
the  spoiled  frames  add  to  the  average  encoding  time  of  each  transmitted  frame.   To  put  this  in 
perspective, though, other VNC solutions are worse, since they will generally never be able to achieve 
sufficient frame rates to avoid spoiling.  At least with TurboVNC, there is a reasonable expectation that 
it will not spoil frames in the baseline configuration.

Further investigation of this topic is definitely warranted.
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5.15 X11 Forwarding vs. Direct X11
When using a remote X display connection, there was generally no observable difference between the 
performance of VirtualGL when using SSh X11 Forwarding (vglconnect with no arguments) and 
when using a direct X11 connection (vglconnect -x).  The exceptions were modes which forced 
the use of the X11 Image Transport over the remote X display connection.  Specifically, synchronous 
mode (vglrun +sync), color index rendering (glxspheres -c), and proxy compression mode 
(vglrun -c proxy) were quite a bit slower when tunneling the X11 protocol through SSh.  SSh 
effectively acted as a bandwidth limiter, limiting the bandwidth as follows:

Effective Bandwidth Limit of SSh X11 Forwarding

Effective 
Bandwidth Limit 

(Synchronous 
Mode)

Actual Frame 
Rate

(Synchronous 
Mode)

Effective 
Bandwidth Limit 

(Color Index)

Actual Frame 
Rate

(Color Index)

Linux →
Linux

274 Mbits/s 7.35 288 Mbits/s 30.74

Linux →
SPARC

177 Mbits/s 4.75 129 Mbits/s 13.93

Linux →
Windows

68.1 Mbits/s 1.84 68.6 Mbits/s 7.26

In all  of  the above cases,  the  frame rate  improved dramatically (2-10x)  when using  a  direct  X11 
connection.  Even with a direct X11 connection, however, synchronous mode from the Linux server to 
the SPARC client was still slow due to pixel conversion overhead.
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5.16 Stereographic Rendering
Comparison Between the Performance of Stereographic and Monographic Rendering in the VGL 

Image Transport

Actual 
Frame Rate

(Mono)
[Baseline]

Actual 
Frame Rate

(Quad-
Buffered 
Stereo)

Actual 
Frame Rate
(Anaglyphic 

Stereo)

CPU-
Limited 

Frame Rate
(Mono)

[Baseline]

CPU-
Limited 

Frame Rate
(Quad-

Buffered 
Stereo)

CPU-
Limited 

Frame Rate
(Anaglyphic 

Stereo)

Linux →
Linux

23.51 12.67
(-46%)

21.71
(-7.7%)

56.10 26.83
(-52%)

37.68
(-33%)

Linux →
SPARC

33.19 14.20
(-57%)

25.99
(-22%)

60.57 28.79
(-52%)

40.29
(-33%)

Linux →
Windows

24.01 8.00
(-67%)

21.25
(-11%)

54.82 22.59
(-59%)

36.95
(-33%)

SPARC → 
Windows

23.75 7.98
(-66%)

11.79
(-50%)

38.93 18.56
(-52%)

25.63
(-34%)

Solaris/x86 → 
Windows

23.01 7.78
(-66%)

21.34
(-7.3%)

46.96 21.61
(-54%)

33.34
(-29%)

Most of these figures make intuitive sense.  To support quad-buffered stereo rendering, VirtualGL must 
compress and send twice the data over the network.  So quad-buffered stereo should be about half as 
fast and half as efficient as mono, which it generally was when displaying to the Linux and SPARC 
clients.  However, quad-buffered stereo incurred an additional penalty on the Windows client due to the 
27% slow-down in OpenGL drawing vs.  X11 drawing in Exceed (described in Section  5.6.)  This 
compounded the slow-down and made quad-buffered stereo only about 1/3 as fast as mono on the 
Windows client, rather than only half as fast.  Anaglyphic stereo generally performed a lot better and 
was only 1/3 less efficient than mono.  The exception here was the SPARC server, which was limited 
by the readback performance issue described in Section 5.10.

In terms of frame size, quad-buffered stereo produced frames that were about twice the size of mono 
(which is intuitively obvious), and anaglyphic stereo produced frames that were 30-40% larger than 
mono.  The latter was due primarily to the additional window coverage caused by the overlapping 
stereo images, which reduced the amount of solid background in each frame.

In TurboVNC, the situation was similar.  Anaglyphic stereo produced frames 25-45% larger than mono, 
used the server's CPUs 25-30% less efficiently, and reduced the actual frame rate by 5-15% (except 
when displaying from the SPARC server, which was also limited to about 11 frames/second.)
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5.17 Interactive Performance
In order to simulate a realistic “worst-case” scenario for interactive applications, GLXSpheres includes 
a mode in which it will wait for a mouse event before rendering each frame.  Since the image workload 
this generates is very similar to the workload generated by GLXSpheres in its default, non-interactive 
mode,  results  from the two modes can be reasonably compared.   This  allows one to quantify the 
performance  differences  between  a  benchmark  environment  (with  frame  spoiling  disabled)  and  a 
realistic interactive environment (with frame spoiling enabled.)

The reason why frame spoiling exists in VirtualGL is because the X server or proxy generally samples 
the mouse at a much faster rate (40-60 Hz) than VirtualGL is able to deliver frames to the client.  Thus, 
if the application had to wait for VirtualGL to finish transmitting a frame before it could render a new 
one,  then  the  mouse would get  ahead of  the  3D rendering,  and the user  would perceive  a  lag  in 
responsiveness.  Frame spoiling allows the 3D rendering to be synchronized with the mouse rather than 
with the image transmission pipeline.  But since VirtualGL cannot usually transmit 60 frames/second to 
the client, unneeded frames have to be rendered, read back, and discarded so that the movement of the 
3D scene appears to track the mouse movement.  Unfortunately, this causes additional server overhead, 
but it's the only way to prevent the 3D application from feeling “draggy.”

The performance of VirtualGL was compared when using both the interactive mode of GLXSpheres 
and the non-interactive mode (baseline), in order to quantify the additional load incurred by rendering 
and processing the spoiled frames on the server.  When running the interactive tests, the mouse was 
moved continuously while measuring the frame rate, CPU load, and network load.  The measuring 
tools were started on a 10-second delay in order to give the system enough time to reach steady state.

In general,  running GLXSpheres interactively using the VGL Image Transport  with frame spoiling 
enabled caused only a slight (no more than 5%) drop in actual frame rate relative to the baseline.  The 
interactive cases used the server's CPUs 22-33% less efficiently than the baseline cases, and there was 
no significant difference in frame sizes between the interactive and baseline cases.

In TurboVNC, the interactive test cases reduced the actual frame rate by no more than 7% relative to 
the  baseline  and were only 2-5% less  efficient  in  their  use of  the  server  CPUs than  the baseline. 
TurboVNC already has a significantly higher encoding time than the VGL Image Transport,  so the 
interactive tests tended to equalize this.

5.18 The Effect of Increasing Network Latency on VirtualGL's Performance
NISTnet was used to artificially add network latency to both the Linux server and the Linux client, 
simulating the latency of a long-haul connection.  NetTest was used to verify that the correct amount of 
latency had been added.  The bandwidth was not altered from the baseline (gigabit) case.
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TurboVNC's interactive performance was much worse than that of the VGL Image Transport when the 
latency of the network was increased beyond 20 ms.  For higher latency values, the interactive frame 
rate of TurboVNC began to be dominated almost entirely by the round-trip time (2x the latency) from 
client to server.  As described in Section 5.2, RFB is a client-driven protocol.  The VNC server will not 
send a frame until  requested by the client,  and the client will  not send a  new request until  it  has 
received a previous frame.  So it is expected that each transmitted frame will require a round trip from 
server to client.  However, it is unclear why this protocol deficiency affected only the interactive tests 
and not the non-interactive tests.  

In contrast to TurboVNC, the VGL Image Transport protocol pushes frames from the server rather than 
pulling them from the client, and this eliminates the need for any round trips.  The performance of the 
VGL Image Transport was limited only by the overhead of TCP/IP at higher latencies, and it is possible 
that increasing the TCP window size would improve that situation.

It is important to note that the above test compared only the steady state performance of GLXSpheres. 
It did not compare the amount of time it took to start up the application, display the initial window, and 
reach steady state.  Even with the incredibly simple GUI in GLXSpheres (a single X window), the 
application startup time over the simulated 100 ms link was on the order of several minutes when using 
the VGL Image Transport and on the order of several seconds when using TurboVNC.  But once the 
application  reached  steady state,  the  VGL Image  Transport  was  the  better  performing  of  the  two 
protocols.
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5.19 The Effect of Decreasing Bandwidth on VirtualGL's Performance
The following table lists the observed frame sizes of the various VirtualGL and TurboVNC protocols as 
well as their theoretical network-limited frame rates on various interconnects.  All quoted frame sizes 
are from the Linux → Linux baseline tests, but similar results were obtained on other platforms (except 
Solaris/x86, which produced frame sizes that were about 10-15% larger.)

Frame Size 
(Mbits)

Network-
Limited 

Frame Rate 
(Gigabit)

Network-
Limited 

Frame Rate 
(100 Mbit)

Network-
Limited 

Frame Rate 
(10 Mbit)

Network-
Limited 

Frame Rate 
(5 Mbit)

Network-
Limited 

Frame Rate 
(1 Mbit)

VGL Image 
Transport 
(JPEG 1X Q95)

2.0 500 50 5.0 2.5 0.50

VGL Image 
Transport 
(JPEG 2X Q80)

0.85 1200 120 12 6.0 1.2

VGL Image 
Transport 
(JPEG 4X Q30)

0.43 2300 230 23 12 2.3

VGL Image 
Transport 
(RGB)

25 40 4 0.40 0.20 0.040

TurboVNC 
(JPEG 1X Q95)

2.2 450 45 4.5 2.3 0.45

TurboVNC 
(JPEG 2X Q80)

1.0 1000 100 10 5.0 1.0

TurboVNC 
(JPEG 4X Q30)

0.57 1800 180 18 8.8 1.8

TurboVNC 
(RGB)

34 29 2.9 0.29 0.15 0.029

Green cells indicate that the frame rate is likely to be limited by the network (rather than the client), but 
the usability should still be good (10 fps or greater.)  Yellow cells indicate that the network is likely to 
limit the frame rate, and the usability would likely be only marginal (5-10 fps.)  Red cells indicate that 
the network is likely to limit the frame rate to an unusable level (< 5 fps.)

At the moment, neither VirtualGL nor TurboVNC offers a good solution for 1 Megabit and slower 
networks (DSL, T1, etc.)  “Low Quality” mode (JPEG compression with 4x chrominance subsampling 
and quality=30) is generally about the lowest usable quality level that still allows text to be read on the 
screen, and even that low level of quality is incapable of producing more than about 2 frames/second 
on a  1 Megabit  link.   With a  5  Megabit  link (which is  about  equivalent  to  a good cable  modem 
connection), the “Low Quality” setting produces frame rates that are marginal to good.

Various configurations were tested over a 100 Megabit link as well as a 10 Megabit link (simulated 
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with NISTnet), and all of the results matched very closely to the theoretical results listed above.  It 
should be noted, however, that this test did not factor in network latency.  When running VirtualGL on 
a network that is both high-latency and low-bandwidth, the above results represent a best-case scenario 
that will almost never be achieved.  It should also be noted that there is a huge amount of variability in 
the  size  of  frames  compressed  with  JPEG.   For  VirtualGL's  baseline  JPEG compression  settings 
(quality=95 with no chrominance subsampling), we have observed compression ratios as bad as 1:1 and 
as good as 100:1, depending on the type of image being compressed.  The baseline GLXSpheres tests 
generally produced images that compressed with a ratio of between 10:1 and 15:1.  YMMV.

5.20 Simultaneous Usage by Multiple Clients
In order to simulate the effect of multiple clients using a VirtualGL server system at the same time, both 
the Linux client and SPARC client were driven simultaneously by the Linux server.  The server was 
able to drive both clients at 23 frames/second using 100% of its CPUs and using 89 Megabits/second of 
network bandwidth.

This validates the provisioning rule of thumb for VirtualGL that each simultaneous user should be 
allocated a single CPU and 50 Megabits/second of network bandwidth.

One important note, however – when running this test, it was observed that the readback performance 
for the server's nVidia Quadro card would slow down dramatically after a few minutes, causing the 
steady state performance to drop by nearly half on both clients.  This could be due to running out of 
Pbuffer space, although the server's graphics card had 256 MB of graphics memory and should not 
have run out of space with only two users.  At any rate, this highlighted a potential problem with multi-
user framebuffer sharing which bears further investigation.
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5.21 RealVNC and NX
RealVNC, TightVNC, and NX, three popular  X proxies with similar  features  to  TurboVNC, were 
compared to TurboVNC in terms of actual frame rate, server CPU usage, and network usage.  The 
results are as follows (these were all measured with the Linux server and the Linux client.)

Actual Frame Rate CPU-Limited Frame 
Rate

Frame Size (Mbits)

TurboVNC 0.4
(JPEG 1X Q95)

28.44 42.45 2.16

TurboVNC 0.4
(JPEG 2X Q80)

36.42 50.09 1.00

TurboVNC 0.4
(RGB)

25.66 64.62 33.86

RealVNC 4.1.2
(ZRLE 16M)

8.15 14.02 4.74

RealVNC 4.1.2
(Hextile 16M)

12.58 20.56 16.24

RealVNC 4.1.2
(Raw 16M)

26.08 41.40 18.76

NX 3.1.0
(JPEG 2X Q80 [qual=9],
no SSL, no Zlib)

9.13 16.91 0.88

NX 3.1.0
(RGB, no SSL, no Zlib)

6.53 10.59 15.33

TightVNC 1.3.9
(JPEG 2X Q80 [qual=9])

13.73 23.27 0.94

This  chart shows pretty clearly why TurboVNC exists.  Its parent implementation, TightVNC, requires 
more than double the CPU cycles to compress each frame (at the same quality) and performs nearly 
three times more slowly, all for only a 6% savings in frame size.  To be fair, TightVNC isn't designed 
for  full-screen  video.   It  provides  optimizations  that  are  mainly  targeted  toward  running  2D 
applications on extremely low-bandwidth links, and it's quite likely that it does a better job of this than 
TurboVNC does.  However, for the types of workloads generated by VirtualGL, TurboVNC is the clear 
winner.  Not shown are the results from the Windows client, on which TightVNC produced only 2 
frames/second of actual performance (for unexplained reasons.)

RealVNC's Hextile and Raw protocols proved quite usable on a gigabit connection (if one could ignore 
the lack of double buffering.)  The Raw protocol apparently uses some sort of additional compression 
(probably Zlib), which would explain the additional CPU overhead as well as the reduced frame size 
(relative to the RGB encoding implementation in TurboVNC.)  The ZRLE protocol shows promise as a 
lossless compression solution for 100 Megabit links, if the frame rate could be increased somehow.

Even without any added compression or encryption, NX still had a significantly higher encoding time 
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than any of the other proxies.  As an experiment, the libjpeg codec in NX 3.1.0 was replaced with 
TurboJPEG, the same codec used by TurboVNC and VirtualGL.  Switching to TurboJPEG improved 
NX's efficiency by about 50%, but even with this improvement, it was still using about twice the CPU 
cycles  as  TurboVNC  to  compress  each  frame.   NX was  never  able  to  achieve  more  than  10-11 
frames/second, even with the help of TurboJPEG.  On Windows, the same experiment never produced 
more than 6-7 frames/second.  This definitely bears further investigation, as there seems to be some 
unknown factor which causes exceptionally high CPU overhead on the NX server.

5.22 TurboVNC Java Viewer
Comparison of the Performance of the Native and Java TurboVNC Viewers

Actual Frame 
Rate

(Native)
[Baseline]

Actual Frame 
Rate

(Java)

CPU-Limited 
Frame Rate

(Native)
[Baseline]

CPU-Limited 
Frame Rate

(Java)

Linux →
Linux

28.44 10.78
(-62%)

42.45 24.72
(-42%)

Linux →
Windows

26.08 10.26
(-61%)

40.62 19.43
(-52%)

The Java viewer was tested on both the Linux and Windows clients, remotely displaying from the 
Linux server.  It was observed to be a bit more than 1/3 as fast as the native viewer, which is consistent 
with its use of the slower libjpeg codec rather than TurboJPEG.  However, note that the efficiency 
nastiness described in Section  5.14 was also observed here.  The lower frame rates produced by the 
Java viewer caused the server to spoil frames, which (on average) halved its efficiency.

5.23 Indirect OpenGL Rendering vs. VirtualGL
People often ask why VirtualGL is  necessary when their  application “runs  just  fine” with indirect 
OpenGL rendering.   Some applications do produce acceptable performance in an indirect  OpenGL 
environment, but generally that is only the case if the application uses display lists, if the 3D model is 
relatively small, and if textures are not used.  Applications which do not use display lists must send 
each vertex of the 3D model  to the 3D graphics  card every time a frame is  drawn (this  is  called 
“immediate mode” rendering.)  With indirect OpenGL, the 3D graphics card is located on the client 
machine, so using immediate mode rendering requires sending every vertex of the 3D model from 
server to client every time a frame is rendered.

Display lists essentially allow an application to cache 3D vertex data on the graphics card, meaning that 
the vertices for a 3D model only have to be sent once.  However, display lists are only suitable for 
static 3D models, that is models whose geometry does not change from frame to frame.  For obvious 
reasons, this makes display lists unsuitable for most design applications, because the whole point of a 
design application is to modify a 3D model in real time.  For volume visualization applications, the use 
of display lists is moot, because volume viz applications generally send most of their data in the form 
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of textures.  For instance, an application which is passing a planar probe through a gigavoxel-sized 
volumetric dataset may generate several megabytes of new textures for every frame while using only a 
handful of vertices.

VirtualGL originated  in  the  oil  & gas  industry,  an  industry which  regularly deals  with  very large 
geometric and volumetric datasets.  These datasets are large enough that transmitting them over even a 
gigabit network is prohibitively slow, much too slow to even consider doing in real time.  But this test 
attempts to show that indirect OpenGL rendering is also prohibitively slow with more “normal-sized” 
datasets, the types of datasets that any design engineer might create.

SPECviewperf is a suite of OpenGL benchmarks which measures the performance of 3D hardware 
under simulated workloads from popular 3D mechanical CAD and digital content creation applications. 
Application vendors work with the SPEC OpenGL Performance Committee (OPC) to  define a  3D 
dataset which is representative of those used by their customers as well as a list of typical rendering 
modes and what percentage of time (on average) each of those modes is used by customers in the field. 
The breakdown of percentages for each rendering mode is used to develop a composite score for each 
application, expressed as a weighted geometric mean of frame rates for all of the rendering modes (see 
http://www.spec.org/gpc/opc.static/geometric.html for more details.)

As described in Section  1.1, the GLXSpheres benchmark is designed to generate an image workload 
rather than a geometry workload, so it uses display lists and renders relatively few polygons.  Thus, it is 
an unrealistic benchmark to use for this particular test, since what we're really testing here is the remote 
display solution's ability to handle medium-to-large 3D models.

For this test, the Linux server and Linux client were used in their baseline configurations (connected by 
gigabit  Ethernet.)   A direct  X11 connection was used so that SSh would not slow down the GLX 
protocol stream in the indirect OpenGL tests.  VirtualGL was used with the VGL Image Transport 
enabled and frame spoiling disabled.  The “local” tests were run on the VirtualGL server as a reference 
(this is described in more detail below.)
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Since the SPECviewperf benchmarks are designed to simulate real application behavior, only the UGS/
NX viewset uses display lists.  Even though that viewset uses display lists, the models it contains are 
large enough (up to 30 million vertices) that it still performs poorly with indirect OpenGL rendering. 
Even on a gigabit network, none of the indirect OpenGL tests generated frame rates high enough to be 
considered usable in a 3D application.

The local display tests are included as a reference, since they show areas in which the performance was 
limited  by the  3D hardware  rather  than  by the  remote  display software.   In  particular,  the  UGS, 
EnSight, and Pro/ENGINEER tests seemed to be mostly 3D hardware-limited, so relatively little drop 
in frame rate was observed by running those tests remotely through VirtualGL.  SolidWorks, CATIA, 
and Maya appeared to be mainly limited by the speed of the VirtualGL client, whereas Lightscape and 
3ds Max were very likely limited by the JPEG compressor.  The 3ds Max benchmark generates a great 
deal of stippled images, whereas the Lightscape benchmark generates a great deal of complex, multi-
colored wireframe images.  Both of these types of images have very high frequency components and 
are thus corner cases for JPEG compression.  The images generated by the 3ds Max and Lightscape 
benchmarks  tend  to  compress  very inefficiently,  thus  requiring  more  CPU and network  resources. 
Further research, including an analysis of CPU and network usage when running SPECviewperf, is 
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definitely warranted.

6 Summary
Red text indicates areas in need of further research.

● On SPARC platforms, VGL 2.1 performed significantly faster than VGL 2.0.x.

● On Solaris/x86 servers, VGL 2.1 performed noticeably faster than VGL 2.0.x when running 32-
bit applications.

● VGL performed significantly faster on Solaris/x86 platforms when using mediaLib 2.5 rather 
than mediaLib 2.4.  However, TurboJPEG/IPP still require 20-40% less CPU time to compress 
each frame than TurboJPEG/mediaLib.  Also, mediaLib 2.5 produces JPEG frames that are 
10-15% larger than those produced by IPP.  It's unclear if any further optimizations in mediaLib 
would be possible, but there is still room for them.  The disparity between the efficiency of 
TurboJPEG/IPP and TurboJPEG/mediaLib did not generally affect the actual frame rate with a 
single user.

● There was generally no significant performance difference between running 32-bit and 64-bit 
apps in VirtualGL, except on Solaris/x86.  On that platform, the 32-bit version of VirtualGL 
used more CPU time to encode each frame than the 64-bit version.  However, this would not 
likely translate into a measurable difference in frame rate except in a heavily-loaded multi-user 
environment.

● A second server CPU was shown to improve single-user performance in some cases, but not by 
much.  Generally, 1 CPU per active user was validated to be a good provisioning rule.

● Enabling additional compression threads on the server (VGL_NPROCS=2) could not be shown 
to increase performance in any case, and it usually increased the encoding time on the server.

● Enabling software gamma correction (the default on Solaris/SPARC servers) increased the 
encoding time by a small amount, but not enough to affect the actual frame rate with a single 
user.

● The default VirtualGL Client drawing method (OpenGL on SPARC systems with 3D 
accelerators, X11 drawing on other systems) was validated to be the fastest approach.  Exceed 
3D was observed to perform much worse with OpenGL drawing than with X11 drawing.

● Linux and Windows clients generally performed equally, but the Linux client was significantly 
faster when performing OpenGL drawing (including drawing quad-buffered stereo images), 
when tunneling the VGL Image Transport or TurboVNC through SSh, and when decoding RGB 
images.

● While all platforms were able to drive the client machine to full capacity, the SPARC server 
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required significantly more server CPU resources to do so, both when using JPEG and RGB 
encoding.  The SPARC server additionally exhibited poor readback performance for GL_RED, 
GL_GREEN, and GL_BLUE pixel formats, which caused the performance of anaglyphic stereo 
to suffer.

● RGB encoding was found to be a reasonable solution for point-to-point (single user) display 
over a gigabit link using the VirtualGL Image Transport.  In this context, it provided a bit more 
performance then JPEG and used significantly less CPU resources on the server.  And, of 
course, RGB is fully lossless.  However, RGB encoding in TurboVNC was generally slower 
than JPEG, and it was only more efficient in certain cases.

● There was generally no advantage to having a gigabit connection to the client except when 
using RGB encoding, synchronous mode (with a remote X display connection), and color index 
rendering (also with a remote X display connection.)

● TurboVNC was generally found to be as fast or faster than the VGL Image Transport, except on 
SPARC servers and clients, but TurboVNC used significantly more server CPU resources on all 
platforms.  Any decrease in overall frame rate caused the TurboVNC server to spoil frames, 
which increased its server resource usage further still.

● There was generally no advantage to using VirtualGL's built-in SSL encryption mechanism 
(vglrun +s) when compared to SSh tunneling (vglconnect -s), except on Windows 
clients.  On Windows clients, when using a high-speed network, SSL encryption was found to 
be faster due to performance limitations in PuTTY.  Similarly, tunneling TurboVNC through 
SSh was faster on the Linux client vs. the Windows client due to the same limitations in PuTTY.

● On a remote X11 connection, synchronous mode was found to perform well only when using 
gigabit connectivity and a direct X11 connection (as opposed to an SSh-forwarded X11 
connection.)

● Color index rendering was found to be usable on an SSh-forwarded remote X11 connection, but 
it only achieved full performance with a direct X11 connection.

● Quad-buffered stereo generally performed at half the frame rate of mono and used twice the 
server CPU resources, except on Windows clients, where it performed at only 1/3 the frame rate 
of mono due to performance limitations in Exceed 3D.

● Anaglyphic stereo generally performed only a bit slower than mono, except on Solaris/SPARC 
servers (which were limited by a readback performance issue.)  Anaglyphic stereo generally 
required about 50% more encoding time on the server (in other words, it was 1/3 less efficient 
in its use of the server's CPUs.)

● Running GLXSpheres interactively using the VGL Image Transport and frame spoiling 
generally caused about a 25-50% increase in encoding time on the server but did not otherwise 
affect performance.  Running the test application interactively in TurboVNC did not cause any 
significant change in performance vs. the non-interactive tests.
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● The VNC (RFB) protocol requires a round trip between client and server to transmit every 
frame, and this limited its performance severely on high-latency connections when compared to 
the VGL Image Transport protocol.

● “High quality” JPEG (no chrominance subsampling, quality=95) was generally observed to 
require 20 Megabits/second of bandwidth to achieve acceptable performance (10 fps) and 50 
Megabit/second to achieve full performance.

● “Medium quality” JPEG (2X chrominance subsampling, quality=80) was generally observed to 
require 10 Megabits/second of bandwidth to achieve acceptable performance and 20 
Megabits/second to achieve full performance.

● “Low quality” JPEG (4X chrominance subsampling, quality=30) was generally observed to 
require 5 Megabits/second of bandwidth to achieve acceptable performance and 10 
Megabits/second to achieve full performance.

● No encoding solution currently available in TurboVNC or VirtualGL produced acceptable 
performance on 1 Megabit/second connections.  A tighter codec than JPEG is needed to support 
1 Megabit/second and smaller pipes.  Problem: the codec must also be compressible at 5+ 
frames/second.  We don't know of anything that currently fits this bill. 

● The dual-processor Opteron server was able to drive two clients to full capacity, using 100% of 
both of its CPUs and nearly 100% of a 100 Megabit/second link.  However, the nVidia card in 
the server began to produce substantially slower readback performance after a few minutes of 
this, for reasons which are unknown.  The current provisioning rule of thumb (1 CPU and 50 
Megabits/second for each simultaneous user) was validated.

● NX generally produced only marginal performance with VirtualGL, mostly due to its 4-7x 
greater encoding time (when compared with TurboVNC.)

● RealVNC's Raw encoding mode proved to be a good solution on gigabit networks, performing 
about equally to RGB encoding in TurboVNC but requiring much less bandwidth (due to Zlib 
compression, we suspect.)  ZRLE and Hextile produced marginal-to-acceptable frame rates 
(also on a gigabit connection) but required 2-3X the encoding time of TurboVNC's default 
JPEG compression mode.

● TightVNC required more than double the encoding time to compress the same JPEG frames as 
TurboVNC, and TightVNC (in the best case) performed only 40% as fast.  When displaying to 
the Windows client, TightVNC performed less than 1/10 as fast as TurboVNC.  TightVNC 
produced frames that were only 6% smaller than those of TurboVNC.

● On high-speed connections, the native TurboVNC viewer was observed to be nearly 3X as fast 
as the Java viewer.  Additionally, the Java viewer's low frame rates caused the TurboVNC 
server to spoil more frames, decreasing its efficiency.
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